A self-driven carbon-doped high-density microwell array for single cell analysis

Single cell analysis preserves the heterogeneity information of target cell population in search of rare biomarkers for disease diagnosis. Microfluidic technology facilitates single cell analysis through its high integrability with multi-functionalities, high sensitivity, precision and dynamic range...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2022-10, Vol.368, p.132198, Article 132198
Hauptverfasser: Wu, Wenshuai, Nguyen, Binh Thi Thanh, Liu, Patricia Yang, Cai, Gaozhe, Feng, Shilun, Shi, Yuzhi, Zhang, Boran, Hong, Yuzhi, Yu, Ruozhen, Zhou, Xiaohong, Zhang, Yi, Yap, Eric Peng Huat, Liu, Ai Qun, Chin, Lip Ket
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 132198
container_title Sensors and actuators. B, Chemical
container_volume 368
creator Wu, Wenshuai
Nguyen, Binh Thi Thanh
Liu, Patricia Yang
Cai, Gaozhe
Feng, Shilun
Shi, Yuzhi
Zhang, Boran
Hong, Yuzhi
Yu, Ruozhen
Zhou, Xiaohong
Zhang, Yi
Yap, Eric Peng Huat
Liu, Ai Qun
Chin, Lip Ket
description Single cell analysis preserves the heterogeneity information of target cell population in search of rare biomarkers for disease diagnosis. Microfluidic technology facilitates single cell analysis through its high integrability with multi-functionalities, high sensitivity, precision and dynamic range for digital assays. However, demonstrated microfluidic devices for single cell analysis suffer from low throughput, the need of external instruments and complicated control system. Herein, we present a self-driven high-density microwell array for quantitative analysis of single-cell metabolic activity. 38,400-microwell array (density: 25,000/cm2) is achieved through two features: (1) Two-layered vertical design of microchannels to provide more space for microwell integration; and (2) Doping of carbon powder in microwell wall to block stray light transmission and improve signal-to-noise ratio, decreasing the interval between microwells down to 30 µm. Moreover, the chip is powered by pre-stored negative pressure without the need of external pump. Our microwell array significantly reduces the assay time from over 24–3 h in Escherichia coli quantitative analysis (6-order dynamic range). We also demonstrated the viability assay and metabolic heterogeneity of single bacteria, envisioning that the microwell array could be applied for other target cells and extended to different molecular techniques such as digital PCR. •A high-density microwell array device for single cell analysis.•25,000/cm2 was achieved through microchannel design and carbon-doping.•Single E. coli quantitative assay using chemifluorescence reaction within 3 hr.•Viability assay and metabolic heterogeneity of single E. coli through the time-lapse imaging.•The high-throughput microwell array with broad dynamic range has potential in other digital assays such as digital PCR.
doi_str_mv 10.1016/j.snb.2022.132198
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2738606904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400522008401</els_id><sourcerecordid>2738606904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-2961746dcfe0e580afa652b07b9c8629a94b63f7db01869a7bfc8a13351853933</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewssU4Y24kfYlVVvKRKsIC15Th26yhNip0W9e9JCWtWI43mXN05CN0SyAkQft_kqatyCpTmhFGi5BmaESlYxkCIczQDRcusACgv0VVKDQAUjMMMvS9wcq3P6hgOrsPWxKrvsrrfuRpvwnqT1a5LYTjibbCx_3Zti02M5oh9H3EK3bp12P5uO9MeU0jX6MKbNrmbvzlHn0-PH8uXbPX2_LpcrDLLaDlkVHEiCl5b78CVEow3vKQViEpZyakyqqg486KugEiujKi8lYYwVhJZMsXYHN1NubvYf-1dGnTT7-NYImkqmOTA1fjiHJHpaiyfUnRe72LYmnjUBPRJnG70KE6fxOlJ3Mg8TIwb6x-CizrZ4Drr6hCdHXTdh3_oH8POdR0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738606904</pqid></control><display><type>article</type><title>A self-driven carbon-doped high-density microwell array for single cell analysis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wu, Wenshuai ; Nguyen, Binh Thi Thanh ; Liu, Patricia Yang ; Cai, Gaozhe ; Feng, Shilun ; Shi, Yuzhi ; Zhang, Boran ; Hong, Yuzhi ; Yu, Ruozhen ; Zhou, Xiaohong ; Zhang, Yi ; Yap, Eric Peng Huat ; Liu, Ai Qun ; Chin, Lip Ket</creator><creatorcontrib>Wu, Wenshuai ; Nguyen, Binh Thi Thanh ; Liu, Patricia Yang ; Cai, Gaozhe ; Feng, Shilun ; Shi, Yuzhi ; Zhang, Boran ; Hong, Yuzhi ; Yu, Ruozhen ; Zhou, Xiaohong ; Zhang, Yi ; Yap, Eric Peng Huat ; Liu, Ai Qun ; Chin, Lip Ket</creatorcontrib><description>Single cell analysis preserves the heterogeneity information of target cell population in search of rare biomarkers for disease diagnosis. Microfluidic technology facilitates single cell analysis through its high integrability with multi-functionalities, high sensitivity, precision and dynamic range for digital assays. However, demonstrated microfluidic devices for single cell analysis suffer from low throughput, the need of external instruments and complicated control system. Herein, we present a self-driven high-density microwell array for quantitative analysis of single-cell metabolic activity. 38,400-microwell array (density: 25,000/cm2) is achieved through two features: (1) Two-layered vertical design of microchannels to provide more space for microwell integration; and (2) Doping of carbon powder in microwell wall to block stray light transmission and improve signal-to-noise ratio, decreasing the interval between microwells down to 30 µm. Moreover, the chip is powered by pre-stored negative pressure without the need of external pump. Our microwell array significantly reduces the assay time from over 24–3 h in Escherichia coli quantitative analysis (6-order dynamic range). We also demonstrated the viability assay and metabolic heterogeneity of single bacteria, envisioning that the microwell array could be applied for other target cells and extended to different molecular techniques such as digital PCR. •A high-density microwell array device for single cell analysis.•25,000/cm2 was achieved through microchannel design and carbon-doping.•Single E. coli quantitative assay using chemifluorescence reaction within 3 hr.•Viability assay and metabolic heterogeneity of single E. coli through the time-lapse imaging.•The high-throughput microwell array with broad dynamic range has potential in other digital assays such as digital PCR.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2022.132198</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Arrays ; Assaying ; Biomarkers ; Carbon ; Control equipment ; Dynamic range ; E coli ; External pressure ; Heterogeneity ; High density ; High-throughput ; Light transmission ; Metabolic heterogeneity ; Metabolism ; Microchannels ; Microfluidic devices ; Microfluidics ; Quantitative analysis ; Signal to noise ratio ; Single cell analysis ; Viability assay</subject><ispartof>Sensors and actuators. B, Chemical, 2022-10, Vol.368, p.132198, Article 132198</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Oct 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-2961746dcfe0e580afa652b07b9c8629a94b63f7db01869a7bfc8a13351853933</citedby><cites>FETCH-LOGICAL-c325t-2961746dcfe0e580afa652b07b9c8629a94b63f7db01869a7bfc8a13351853933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2022.132198$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Wu, Wenshuai</creatorcontrib><creatorcontrib>Nguyen, Binh Thi Thanh</creatorcontrib><creatorcontrib>Liu, Patricia Yang</creatorcontrib><creatorcontrib>Cai, Gaozhe</creatorcontrib><creatorcontrib>Feng, Shilun</creatorcontrib><creatorcontrib>Shi, Yuzhi</creatorcontrib><creatorcontrib>Zhang, Boran</creatorcontrib><creatorcontrib>Hong, Yuzhi</creatorcontrib><creatorcontrib>Yu, Ruozhen</creatorcontrib><creatorcontrib>Zhou, Xiaohong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Yap, Eric Peng Huat</creatorcontrib><creatorcontrib>Liu, Ai Qun</creatorcontrib><creatorcontrib>Chin, Lip Ket</creatorcontrib><title>A self-driven carbon-doped high-density microwell array for single cell analysis</title><title>Sensors and actuators. B, Chemical</title><description>Single cell analysis preserves the heterogeneity information of target cell population in search of rare biomarkers for disease diagnosis. Microfluidic technology facilitates single cell analysis through its high integrability with multi-functionalities, high sensitivity, precision and dynamic range for digital assays. However, demonstrated microfluidic devices for single cell analysis suffer from low throughput, the need of external instruments and complicated control system. Herein, we present a self-driven high-density microwell array for quantitative analysis of single-cell metabolic activity. 38,400-microwell array (density: 25,000/cm2) is achieved through two features: (1) Two-layered vertical design of microchannels to provide more space for microwell integration; and (2) Doping of carbon powder in microwell wall to block stray light transmission and improve signal-to-noise ratio, decreasing the interval between microwells down to 30 µm. Moreover, the chip is powered by pre-stored negative pressure without the need of external pump. Our microwell array significantly reduces the assay time from over 24–3 h in Escherichia coli quantitative analysis (6-order dynamic range). We also demonstrated the viability assay and metabolic heterogeneity of single bacteria, envisioning that the microwell array could be applied for other target cells and extended to different molecular techniques such as digital PCR. •A high-density microwell array device for single cell analysis.•25,000/cm2 was achieved through microchannel design and carbon-doping.•Single E. coli quantitative assay using chemifluorescence reaction within 3 hr.•Viability assay and metabolic heterogeneity of single E. coli through the time-lapse imaging.•The high-throughput microwell array with broad dynamic range has potential in other digital assays such as digital PCR.</description><subject>Arrays</subject><subject>Assaying</subject><subject>Biomarkers</subject><subject>Carbon</subject><subject>Control equipment</subject><subject>Dynamic range</subject><subject>E coli</subject><subject>External pressure</subject><subject>Heterogeneity</subject><subject>High density</subject><subject>High-throughput</subject><subject>Light transmission</subject><subject>Metabolic heterogeneity</subject><subject>Metabolism</subject><subject>Microchannels</subject><subject>Microfluidic devices</subject><subject>Microfluidics</subject><subject>Quantitative analysis</subject><subject>Signal to noise ratio</subject><subject>Single cell analysis</subject><subject>Viability assay</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewssU4Y24kfYlVVvKRKsIC15Th26yhNip0W9e9JCWtWI43mXN05CN0SyAkQft_kqatyCpTmhFGi5BmaESlYxkCIczQDRcusACgv0VVKDQAUjMMMvS9wcq3P6hgOrsPWxKrvsrrfuRpvwnqT1a5LYTjibbCx_3Zti02M5oh9H3EK3bp12P5uO9MeU0jX6MKbNrmbvzlHn0-PH8uXbPX2_LpcrDLLaDlkVHEiCl5b78CVEow3vKQViEpZyakyqqg486KugEiujKi8lYYwVhJZMsXYHN1NubvYf-1dGnTT7-NYImkqmOTA1fjiHJHpaiyfUnRe72LYmnjUBPRJnG70KE6fxOlJ3Mg8TIwb6x-CizrZ4Drr6hCdHXTdh3_oH8POdR0</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Wu, Wenshuai</creator><creator>Nguyen, Binh Thi Thanh</creator><creator>Liu, Patricia Yang</creator><creator>Cai, Gaozhe</creator><creator>Feng, Shilun</creator><creator>Shi, Yuzhi</creator><creator>Zhang, Boran</creator><creator>Hong, Yuzhi</creator><creator>Yu, Ruozhen</creator><creator>Zhou, Xiaohong</creator><creator>Zhang, Yi</creator><creator>Yap, Eric Peng Huat</creator><creator>Liu, Ai Qun</creator><creator>Chin, Lip Ket</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20221001</creationdate><title>A self-driven carbon-doped high-density microwell array for single cell analysis</title><author>Wu, Wenshuai ; Nguyen, Binh Thi Thanh ; Liu, Patricia Yang ; Cai, Gaozhe ; Feng, Shilun ; Shi, Yuzhi ; Zhang, Boran ; Hong, Yuzhi ; Yu, Ruozhen ; Zhou, Xiaohong ; Zhang, Yi ; Yap, Eric Peng Huat ; Liu, Ai Qun ; Chin, Lip Ket</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-2961746dcfe0e580afa652b07b9c8629a94b63f7db01869a7bfc8a13351853933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrays</topic><topic>Assaying</topic><topic>Biomarkers</topic><topic>Carbon</topic><topic>Control equipment</topic><topic>Dynamic range</topic><topic>E coli</topic><topic>External pressure</topic><topic>Heterogeneity</topic><topic>High density</topic><topic>High-throughput</topic><topic>Light transmission</topic><topic>Metabolic heterogeneity</topic><topic>Metabolism</topic><topic>Microchannels</topic><topic>Microfluidic devices</topic><topic>Microfluidics</topic><topic>Quantitative analysis</topic><topic>Signal to noise ratio</topic><topic>Single cell analysis</topic><topic>Viability assay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wenshuai</creatorcontrib><creatorcontrib>Nguyen, Binh Thi Thanh</creatorcontrib><creatorcontrib>Liu, Patricia Yang</creatorcontrib><creatorcontrib>Cai, Gaozhe</creatorcontrib><creatorcontrib>Feng, Shilun</creatorcontrib><creatorcontrib>Shi, Yuzhi</creatorcontrib><creatorcontrib>Zhang, Boran</creatorcontrib><creatorcontrib>Hong, Yuzhi</creatorcontrib><creatorcontrib>Yu, Ruozhen</creatorcontrib><creatorcontrib>Zhou, Xiaohong</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Yap, Eric Peng Huat</creatorcontrib><creatorcontrib>Liu, Ai Qun</creatorcontrib><creatorcontrib>Chin, Lip Ket</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wenshuai</au><au>Nguyen, Binh Thi Thanh</au><au>Liu, Patricia Yang</au><au>Cai, Gaozhe</au><au>Feng, Shilun</au><au>Shi, Yuzhi</au><au>Zhang, Boran</au><au>Hong, Yuzhi</au><au>Yu, Ruozhen</au><au>Zhou, Xiaohong</au><au>Zhang, Yi</au><au>Yap, Eric Peng Huat</au><au>Liu, Ai Qun</au><au>Chin, Lip Ket</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A self-driven carbon-doped high-density microwell array for single cell analysis</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>368</volume><spage>132198</spage><pages>132198-</pages><artnum>132198</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>Single cell analysis preserves the heterogeneity information of target cell population in search of rare biomarkers for disease diagnosis. Microfluidic technology facilitates single cell analysis through its high integrability with multi-functionalities, high sensitivity, precision and dynamic range for digital assays. However, demonstrated microfluidic devices for single cell analysis suffer from low throughput, the need of external instruments and complicated control system. Herein, we present a self-driven high-density microwell array for quantitative analysis of single-cell metabolic activity. 38,400-microwell array (density: 25,000/cm2) is achieved through two features: (1) Two-layered vertical design of microchannels to provide more space for microwell integration; and (2) Doping of carbon powder in microwell wall to block stray light transmission and improve signal-to-noise ratio, decreasing the interval between microwells down to 30 µm. Moreover, the chip is powered by pre-stored negative pressure without the need of external pump. Our microwell array significantly reduces the assay time from over 24–3 h in Escherichia coli quantitative analysis (6-order dynamic range). We also demonstrated the viability assay and metabolic heterogeneity of single bacteria, envisioning that the microwell array could be applied for other target cells and extended to different molecular techniques such as digital PCR. •A high-density microwell array device for single cell analysis.•25,000/cm2 was achieved through microchannel design and carbon-doping.•Single E. coli quantitative assay using chemifluorescence reaction within 3 hr.•Viability assay and metabolic heterogeneity of single E. coli through the time-lapse imaging.•The high-throughput microwell array with broad dynamic range has potential in other digital assays such as digital PCR.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2022.132198</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2022-10, Vol.368, p.132198, Article 132198
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2738606904
source ScienceDirect Journals (5 years ago - present)
subjects Arrays
Assaying
Biomarkers
Carbon
Control equipment
Dynamic range
E coli
External pressure
Heterogeneity
High density
High-throughput
Light transmission
Metabolic heterogeneity
Metabolism
Microchannels
Microfluidic devices
Microfluidics
Quantitative analysis
Signal to noise ratio
Single cell analysis
Viability assay
title A self-driven carbon-doped high-density microwell array for single cell analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A15%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20self-driven%20carbon-doped%20high-density%20microwell%20array%20for%20single%20cell%20analysis&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Wu,%20Wenshuai&rft.date=2022-10-01&rft.volume=368&rft.spage=132198&rft.pages=132198-&rft.artnum=132198&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2022.132198&rft_dat=%3Cproquest_cross%3E2738606904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738606904&rft_id=info:pmid/&rft_els_id=S0925400522008401&rfr_iscdi=true