Hybrid meta‐heuristic algorithm for optimal virtual machine placement and migration in cloud computing

Summary Data sharing in cloud computing happens with multiple participants to freely distribute the group data, which focuses on advancing the effectiveness of work in cooperative backgrounds and has attained widespread benefits. The main intent of this article is to accomplish a virtual machines (V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Concurrency and computation 2022-12, Vol.34 (28), p.n/a
Hauptverfasser: Infantia Henry, Niroshini, Anbuananth, C, Kalarani, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 28
container_start_page
container_title Concurrency and computation
container_volume 34
creator Infantia Henry, Niroshini
Anbuananth, C
Kalarani, S
description Summary Data sharing in cloud computing happens with multiple participants to freely distribute the group data, which focuses on advancing the effectiveness of work in cooperative backgrounds and has attained widespread benefits. The main intent of this article is to accomplish a virtual machines (VMs) placement and migration model using a hybrid meta‐heuristic concept. A new meta‐heuristic algorithm named DJ‐HA is developed for optimal VM placement and migration to reduce the count of active servers, and minimization of makespan, and energy consumption with a faster convergence rate in a cloud background. Then, the VM migration is done based on the multi‐objective function concerning energy consumption and makespan using the same hybrid DJ‐HA. From the result analysis, the energy consumption of the DJ‐HA is correspondingly secured at 4.3%, 3.5%, 31%, and 33% more advanced than PSO, GWO, DHOA, and JA, at the 100th iteration for Experiment 1. Accordingly, the cost function of the suggested DJ‐HA is secured at 88.8%, 89.4%, 33.3%, and 50% increased than PSO, GWO, DHOA, and JA at the 100th iteration for Experiment 4. Hence, it is proved that the suggested VM migration using DJ‐HA is enriched than the other conventional algorithms.
doi_str_mv 10.1002/cpe.7353
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2738290853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738290853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-5b4b706416f5fe0bc638447477fe80d8717c63fa41ff6087ec5f8030149dd83</originalsourceid><addsrcrecordid>eNp1kNFKwzAUhoMoOKfgIwS88aYzadImu5QxnTBQ0PuQpsma0SY1TZXd-Qg-o09i5sQ7r_7D4eM_nA-AS4xmGKH8RvV6xkhBjsAEFyTPUEno8d-cl6fgbBi2CGGMCJ6AZrWrgq1hp6P8-vhs9BjsEK2Cst34YGPTQeMD9H20nWzhmw1xTNlJ1VinYd9KpTvtIpQuldhNkNF6B62DqvVjDZXv-jFatzkHJ0a2g774zSl4vlu-LFbZ-vH-YXG7zlQ-JyQrKloxVFJcmsJoVKmScEoZZcxojmrOMEsrIyk2pkScaVUYjgjCdF7XnEzB1aG1D_511EMUWz8Glw6KnBGezxEvSKKuD5QKfhiCNqIP6b2wExiJvUWRLIq9xYRmB_Tdtnr3LycWT8sf_hve4XUD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738290853</pqid></control><display><type>article</type><title>Hybrid meta‐heuristic algorithm for optimal virtual machine placement and migration in cloud computing</title><source>Access via Wiley Online Library</source><creator>Infantia Henry, Niroshini ; Anbuananth, C ; Kalarani, S</creator><creatorcontrib>Infantia Henry, Niroshini ; Anbuananth, C ; Kalarani, S</creatorcontrib><description>Summary Data sharing in cloud computing happens with multiple participants to freely distribute the group data, which focuses on advancing the effectiveness of work in cooperative backgrounds and has attained widespread benefits. The main intent of this article is to accomplish a virtual machines (VMs) placement and migration model using a hybrid meta‐heuristic concept. A new meta‐heuristic algorithm named DJ‐HA is developed for optimal VM placement and migration to reduce the count of active servers, and minimization of makespan, and energy consumption with a faster convergence rate in a cloud background. Then, the VM migration is done based on the multi‐objective function concerning energy consumption and makespan using the same hybrid DJ‐HA. From the result analysis, the energy consumption of the DJ‐HA is correspondingly secured at 4.3%, 3.5%, 31%, and 33% more advanced than PSO, GWO, DHOA, and JA, at the 100th iteration for Experiment 1. Accordingly, the cost function of the suggested DJ‐HA is secured at 88.8%, 89.4%, 33.3%, and 50% increased than PSO, GWO, DHOA, and JA at the 100th iteration for Experiment 4. Hence, it is proved that the suggested VM migration using DJ‐HA is enriched than the other conventional algorithms.</description><identifier>ISSN: 1532-0626</identifier><identifier>EISSN: 1532-0634</identifier><identifier>DOI: 10.1002/cpe.7353</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Cloud computing ; Cost function ; Data retrieval ; deer Jaya hunting algorithm ; Energy consumption ; Heuristic ; Heuristic methods ; Iterative methods ; loud computing ; Optimization ; Placement ; resource utilization ; Virtual environments ; virtual machines migration ; virtual machines placement</subject><ispartof>Concurrency and computation, 2022-12, Vol.34 (28), p.n/a</ispartof><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-5b4b706416f5fe0bc638447477fe80d8717c63fa41ff6087ec5f8030149dd83</citedby><cites>FETCH-LOGICAL-c2933-5b4b706416f5fe0bc638447477fe80d8717c63fa41ff6087ec5f8030149dd83</cites><orcidid>0000-0002-3788-1003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcpe.7353$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcpe.7353$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Infantia Henry, Niroshini</creatorcontrib><creatorcontrib>Anbuananth, C</creatorcontrib><creatorcontrib>Kalarani, S</creatorcontrib><title>Hybrid meta‐heuristic algorithm for optimal virtual machine placement and migration in cloud computing</title><title>Concurrency and computation</title><description>Summary Data sharing in cloud computing happens with multiple participants to freely distribute the group data, which focuses on advancing the effectiveness of work in cooperative backgrounds and has attained widespread benefits. The main intent of this article is to accomplish a virtual machines (VMs) placement and migration model using a hybrid meta‐heuristic concept. A new meta‐heuristic algorithm named DJ‐HA is developed for optimal VM placement and migration to reduce the count of active servers, and minimization of makespan, and energy consumption with a faster convergence rate in a cloud background. Then, the VM migration is done based on the multi‐objective function concerning energy consumption and makespan using the same hybrid DJ‐HA. From the result analysis, the energy consumption of the DJ‐HA is correspondingly secured at 4.3%, 3.5%, 31%, and 33% more advanced than PSO, GWO, DHOA, and JA, at the 100th iteration for Experiment 1. Accordingly, the cost function of the suggested DJ‐HA is secured at 88.8%, 89.4%, 33.3%, and 50% increased than PSO, GWO, DHOA, and JA at the 100th iteration for Experiment 4. Hence, it is proved that the suggested VM migration using DJ‐HA is enriched than the other conventional algorithms.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Cost function</subject><subject>Data retrieval</subject><subject>deer Jaya hunting algorithm</subject><subject>Energy consumption</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Iterative methods</subject><subject>loud computing</subject><subject>Optimization</subject><subject>Placement</subject><subject>resource utilization</subject><subject>Virtual environments</subject><subject>virtual machines migration</subject><subject>virtual machines placement</subject><issn>1532-0626</issn><issn>1532-0634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kNFKwzAUhoMoOKfgIwS88aYzadImu5QxnTBQ0PuQpsma0SY1TZXd-Qg-o09i5sQ7r_7D4eM_nA-AS4xmGKH8RvV6xkhBjsAEFyTPUEno8d-cl6fgbBi2CGGMCJ6AZrWrgq1hp6P8-vhs9BjsEK2Cst34YGPTQeMD9H20nWzhmw1xTNlJ1VinYd9KpTvtIpQuldhNkNF6B62DqvVjDZXv-jFatzkHJ0a2g774zSl4vlu-LFbZ-vH-YXG7zlQ-JyQrKloxVFJcmsJoVKmScEoZZcxojmrOMEsrIyk2pkScaVUYjgjCdF7XnEzB1aG1D_511EMUWz8Glw6KnBGezxEvSKKuD5QKfhiCNqIP6b2wExiJvUWRLIq9xYRmB_Tdtnr3LycWT8sf_hve4XUD</recordid><startdate>20221225</startdate><enddate>20221225</enddate><creator>Infantia Henry, Niroshini</creator><creator>Anbuananth, C</creator><creator>Kalarani, S</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3788-1003</orcidid></search><sort><creationdate>20221225</creationdate><title>Hybrid meta‐heuristic algorithm for optimal virtual machine placement and migration in cloud computing</title><author>Infantia Henry, Niroshini ; Anbuananth, C ; Kalarani, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-5b4b706416f5fe0bc638447477fe80d8717c63fa41ff6087ec5f8030149dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Cost function</topic><topic>Data retrieval</topic><topic>deer Jaya hunting algorithm</topic><topic>Energy consumption</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Iterative methods</topic><topic>loud computing</topic><topic>Optimization</topic><topic>Placement</topic><topic>resource utilization</topic><topic>Virtual environments</topic><topic>virtual machines migration</topic><topic>virtual machines placement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Infantia Henry, Niroshini</creatorcontrib><creatorcontrib>Anbuananth, C</creatorcontrib><creatorcontrib>Kalarani, S</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Concurrency and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Infantia Henry, Niroshini</au><au>Anbuananth, C</au><au>Kalarani, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid meta‐heuristic algorithm for optimal virtual machine placement and migration in cloud computing</atitle><jtitle>Concurrency and computation</jtitle><date>2022-12-25</date><risdate>2022</risdate><volume>34</volume><issue>28</issue><epage>n/a</epage><issn>1532-0626</issn><eissn>1532-0634</eissn><abstract>Summary Data sharing in cloud computing happens with multiple participants to freely distribute the group data, which focuses on advancing the effectiveness of work in cooperative backgrounds and has attained widespread benefits. The main intent of this article is to accomplish a virtual machines (VMs) placement and migration model using a hybrid meta‐heuristic concept. A new meta‐heuristic algorithm named DJ‐HA is developed for optimal VM placement and migration to reduce the count of active servers, and minimization of makespan, and energy consumption with a faster convergence rate in a cloud background. Then, the VM migration is done based on the multi‐objective function concerning energy consumption and makespan using the same hybrid DJ‐HA. From the result analysis, the energy consumption of the DJ‐HA is correspondingly secured at 4.3%, 3.5%, 31%, and 33% more advanced than PSO, GWO, DHOA, and JA, at the 100th iteration for Experiment 1. Accordingly, the cost function of the suggested DJ‐HA is secured at 88.8%, 89.4%, 33.3%, and 50% increased than PSO, GWO, DHOA, and JA at the 100th iteration for Experiment 4. Hence, it is proved that the suggested VM migration using DJ‐HA is enriched than the other conventional algorithms.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/cpe.7353</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3788-1003</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1532-0626
ispartof Concurrency and computation, 2022-12, Vol.34 (28), p.n/a
issn 1532-0626
1532-0634
language eng
recordid cdi_proquest_journals_2738290853
source Access via Wiley Online Library
subjects Algorithms
Cloud computing
Cost function
Data retrieval
deer Jaya hunting algorithm
Energy consumption
Heuristic
Heuristic methods
Iterative methods
loud computing
Optimization
Placement
resource utilization
Virtual environments
virtual machines migration
virtual machines placement
title Hybrid meta‐heuristic algorithm for optimal virtual machine placement and migration in cloud computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20meta%E2%80%90heuristic%20algorithm%20for%20optimal%20virtual%20machine%20placement%20and%20migration%20in%20cloud%20computing&rft.jtitle=Concurrency%20and%20computation&rft.au=Infantia%20Henry,%20Niroshini&rft.date=2022-12-25&rft.volume=34&rft.issue=28&rft.epage=n/a&rft.issn=1532-0626&rft.eissn=1532-0634&rft_id=info:doi/10.1002/cpe.7353&rft_dat=%3Cproquest_cross%3E2738290853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738290853&rft_id=info:pmid/&rfr_iscdi=true