Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate
Diamond has compelling advantages in power devices as an ultrawide-bandgap semiconductor. Using first-principles calculations, we systematically investigate the structural and electronic properties of hydrogen-terminated diamond (H-diamond) (111) van der Waals (vdW) heterostructures with graphite an...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-11, Vol.121 (21) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 121 |
creator | Gui, Qingzhong Wang, Zhen Cheng, Chunmin Zha, Xiaoming Robertson, John Liu, Sheng Zhang, Zhaofu Guo, Yuzheng |
description | Diamond has compelling advantages in power devices as an ultrawide-bandgap semiconductor. Using first-principles calculations, we systematically investigate the structural and electronic properties of hydrogen-terminated diamond (H-diamond) (111) van der Waals (vdW) heterostructures with graphite and hexagonal boron nitride (h-BN) layers. The graphite/H-diamond heterostructure forms a p-type ohmic contact and the p-type Schottky barrier decreases as the number of graphite layers increases. In contrast, the h-BN/H-diamond heterostructure exhibits semiconducting properties and a tunable type-II band alignment. Moreover, the charge transfer is concentrated at the interface with a large amount of charge accumulating on the C–H bonds on the H-diamond (111) surface, indicating the formation of a highly conductive two-dimensional hole gas (2DHG) layer. In a similar vein, the promising structural and electronic properties of graphite, h-BN, and H-diamond (111) in the graphite/h-BN/H-diamond (111) vdW heterostructure are well preserved upon their contact, while such heterostructure exhibits flexible band offset and Schottky contacts. These studies of interface engineering for H-diamond heterostructures are expected to advance the application of 2D materials in H-diamond field effect transistors, which is an important development in the design of surface transfer doping for 2DHG H-diamond devices. |
doi_str_mv | 10.1063/5.0117263 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2738271832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738271832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-bfca2ef06d0c9801f4bc2e899e53db2d20e8b2cf286694ce25dfccdbb2098bad3</originalsourceid><addsrcrecordid>eNqd0M1KAzEQAOAgCtbqwTcIeFLYmp_ubvaoRa1Q9FLPSzaZ7Ka0yZqkSo--uVta8O5pmJlvZmAQuqZkQknB7_MJobRkBT9BI0rKMuOUilM0IoTwrKhyeo4uYlwNac44H6GfZQc-QLJKrnFMW73D3uDUAbYuQTBSAQbXWgcQrGux8QHPM23lxjuNjYW1xmAMqIRTkC7amHyI-NumDnfZ4xtuZQKsBzeQYBWWw1gbZN_Zob5vXqIzI9cRro5xjD6en5azebZ4f3mdPSwyxQuWssYoycCQQhNVCULNtFEMRFVBznXDNCMgGqYME0VRTRWwXBuldNMwUolGaj5GN4e9ffCfW4ipXvltcMPJmpVcsJIKzgZ1e1Aq-BgDmLoPdiPDrqak3n-4zuvjhwd7d7BR2SST9e5_-MuHP1j32vBfLUCMMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738271832</pqid></control><display><type>article</type><title>Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Gui, Qingzhong ; Wang, Zhen ; Cheng, Chunmin ; Zha, Xiaoming ; Robertson, John ; Liu, Sheng ; Zhang, Zhaofu ; Guo, Yuzheng</creator><creatorcontrib>Gui, Qingzhong ; Wang, Zhen ; Cheng, Chunmin ; Zha, Xiaoming ; Robertson, John ; Liu, Sheng ; Zhang, Zhaofu ; Guo, Yuzheng</creatorcontrib><description>Diamond has compelling advantages in power devices as an ultrawide-bandgap semiconductor. Using first-principles calculations, we systematically investigate the structural and electronic properties of hydrogen-terminated diamond (H-diamond) (111) van der Waals (vdW) heterostructures with graphite and hexagonal boron nitride (h-BN) layers. The graphite/H-diamond heterostructure forms a p-type ohmic contact and the p-type Schottky barrier decreases as the number of graphite layers increases. In contrast, the h-BN/H-diamond heterostructure exhibits semiconducting properties and a tunable type-II band alignment. Moreover, the charge transfer is concentrated at the interface with a large amount of charge accumulating on the C–H bonds on the H-diamond (111) surface, indicating the formation of a highly conductive two-dimensional hole gas (2DHG) layer. In a similar vein, the promising structural and electronic properties of graphite, h-BN, and H-diamond (111) in the graphite/h-BN/H-diamond (111) vdW heterostructure are well preserved upon their contact, while such heterostructure exhibits flexible band offset and Schottky contacts. These studies of interface engineering for H-diamond heterostructures are expected to advance the application of 2D materials in H-diamond field effect transistors, which is an important development in the design of surface transfer doping for 2DHG H-diamond devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0117263</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Boron nitride ; Charge transfer ; Contact resistance ; Diamonds ; Electronic devices ; Field effect transistors ; First principles ; Graphite ; Heterostructures ; Semiconductor devices ; Transistors ; Two dimensional materials</subject><ispartof>Applied physics letters, 2022-11, Vol.121 (21)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-bfca2ef06d0c9801f4bc2e899e53db2d20e8b2cf286694ce25dfccdbb2098bad3</citedby><cites>FETCH-LOGICAL-c362t-bfca2ef06d0c9801f4bc2e899e53db2d20e8b2cf286694ce25dfccdbb2098bad3</cites><orcidid>0000-0002-1102-891X ; 0000-0001-6558-528X ; 0000-0001-5172-6096 ; 0000-0002-1406-1256 ; 0000-0003-4997-4271 ; 0000-0003-2334-1804 ; 0000-0001-9224-3816 ; 0000-0001-6033-078X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0117263$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Gui, Qingzhong</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Cheng, Chunmin</creatorcontrib><creatorcontrib>Zha, Xiaoming</creatorcontrib><creatorcontrib>Robertson, John</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Zhang, Zhaofu</creatorcontrib><creatorcontrib>Guo, Yuzheng</creatorcontrib><title>Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate</title><title>Applied physics letters</title><description>Diamond has compelling advantages in power devices as an ultrawide-bandgap semiconductor. Using first-principles calculations, we systematically investigate the structural and electronic properties of hydrogen-terminated diamond (H-diamond) (111) van der Waals (vdW) heterostructures with graphite and hexagonal boron nitride (h-BN) layers. The graphite/H-diamond heterostructure forms a p-type ohmic contact and the p-type Schottky barrier decreases as the number of graphite layers increases. In contrast, the h-BN/H-diamond heterostructure exhibits semiconducting properties and a tunable type-II band alignment. Moreover, the charge transfer is concentrated at the interface with a large amount of charge accumulating on the C–H bonds on the H-diamond (111) surface, indicating the formation of a highly conductive two-dimensional hole gas (2DHG) layer. In a similar vein, the promising structural and electronic properties of graphite, h-BN, and H-diamond (111) in the graphite/h-BN/H-diamond (111) vdW heterostructure are well preserved upon their contact, while such heterostructure exhibits flexible band offset and Schottky contacts. These studies of interface engineering for H-diamond heterostructures are expected to advance the application of 2D materials in H-diamond field effect transistors, which is an important development in the design of surface transfer doping for 2DHG H-diamond devices.</description><subject>Applied physics</subject><subject>Boron nitride</subject><subject>Charge transfer</subject><subject>Contact resistance</subject><subject>Diamonds</subject><subject>Electronic devices</subject><subject>Field effect transistors</subject><subject>First principles</subject><subject>Graphite</subject><subject>Heterostructures</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><subject>Two dimensional materials</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEQAOAgCtbqwTcIeFLYmp_ubvaoRa1Q9FLPSzaZ7Ka0yZqkSo--uVta8O5pmJlvZmAQuqZkQknB7_MJobRkBT9BI0rKMuOUilM0IoTwrKhyeo4uYlwNac44H6GfZQc-QLJKrnFMW73D3uDUAbYuQTBSAQbXWgcQrGux8QHPM23lxjuNjYW1xmAMqIRTkC7amHyI-NumDnfZ4xtuZQKsBzeQYBWWw1gbZN_Zob5vXqIzI9cRro5xjD6en5azebZ4f3mdPSwyxQuWssYoycCQQhNVCULNtFEMRFVBznXDNCMgGqYME0VRTRWwXBuldNMwUolGaj5GN4e9ffCfW4ipXvltcMPJmpVcsJIKzgZ1e1Aq-BgDmLoPdiPDrqak3n-4zuvjhwd7d7BR2SST9e5_-MuHP1j32vBfLUCMMQ</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Gui, Qingzhong</creator><creator>Wang, Zhen</creator><creator>Cheng, Chunmin</creator><creator>Zha, Xiaoming</creator><creator>Robertson, John</creator><creator>Liu, Sheng</creator><creator>Zhang, Zhaofu</creator><creator>Guo, Yuzheng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1102-891X</orcidid><orcidid>https://orcid.org/0000-0001-6558-528X</orcidid><orcidid>https://orcid.org/0000-0001-5172-6096</orcidid><orcidid>https://orcid.org/0000-0002-1406-1256</orcidid><orcidid>https://orcid.org/0000-0003-4997-4271</orcidid><orcidid>https://orcid.org/0000-0003-2334-1804</orcidid><orcidid>https://orcid.org/0000-0001-9224-3816</orcidid><orcidid>https://orcid.org/0000-0001-6033-078X</orcidid></search><sort><creationdate>20221121</creationdate><title>Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate</title><author>Gui, Qingzhong ; Wang, Zhen ; Cheng, Chunmin ; Zha, Xiaoming ; Robertson, John ; Liu, Sheng ; Zhang, Zhaofu ; Guo, Yuzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-bfca2ef06d0c9801f4bc2e899e53db2d20e8b2cf286694ce25dfccdbb2098bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Boron nitride</topic><topic>Charge transfer</topic><topic>Contact resistance</topic><topic>Diamonds</topic><topic>Electronic devices</topic><topic>Field effect transistors</topic><topic>First principles</topic><topic>Graphite</topic><topic>Heterostructures</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gui, Qingzhong</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Cheng, Chunmin</creatorcontrib><creatorcontrib>Zha, Xiaoming</creatorcontrib><creatorcontrib>Robertson, John</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Zhang, Zhaofu</creatorcontrib><creatorcontrib>Guo, Yuzheng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gui, Qingzhong</au><au>Wang, Zhen</au><au>Cheng, Chunmin</au><au>Zha, Xiaoming</au><au>Robertson, John</au><au>Liu, Sheng</au><au>Zhang, Zhaofu</au><au>Guo, Yuzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate</atitle><jtitle>Applied physics letters</jtitle><date>2022-11-21</date><risdate>2022</risdate><volume>121</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Diamond has compelling advantages in power devices as an ultrawide-bandgap semiconductor. Using first-principles calculations, we systematically investigate the structural and electronic properties of hydrogen-terminated diamond (H-diamond) (111) van der Waals (vdW) heterostructures with graphite and hexagonal boron nitride (h-BN) layers. The graphite/H-diamond heterostructure forms a p-type ohmic contact and the p-type Schottky barrier decreases as the number of graphite layers increases. In contrast, the h-BN/H-diamond heterostructure exhibits semiconducting properties and a tunable type-II band alignment. Moreover, the charge transfer is concentrated at the interface with a large amount of charge accumulating on the C–H bonds on the H-diamond (111) surface, indicating the formation of a highly conductive two-dimensional hole gas (2DHG) layer. In a similar vein, the promising structural and electronic properties of graphite, h-BN, and H-diamond (111) in the graphite/h-BN/H-diamond (111) vdW heterostructure are well preserved upon their contact, while such heterostructure exhibits flexible band offset and Schottky contacts. These studies of interface engineering for H-diamond heterostructures are expected to advance the application of 2D materials in H-diamond field effect transistors, which is an important development in the design of surface transfer doping for 2DHG H-diamond devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0117263</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1102-891X</orcidid><orcidid>https://orcid.org/0000-0001-6558-528X</orcidid><orcidid>https://orcid.org/0000-0001-5172-6096</orcidid><orcidid>https://orcid.org/0000-0002-1406-1256</orcidid><orcidid>https://orcid.org/0000-0003-4997-4271</orcidid><orcidid>https://orcid.org/0000-0003-2334-1804</orcidid><orcidid>https://orcid.org/0000-0001-9224-3816</orcidid><orcidid>https://orcid.org/0000-0001-6033-078X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-11, Vol.121 (21) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_proquest_journals_2738271832 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Boron nitride Charge transfer Contact resistance Diamonds Electronic devices Field effect transistors First principles Graphite Heterostructures Semiconductor devices Transistors Two dimensional materials |
title | Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20of%20the%20interface%20engineering%20for%20H-diamond%20field%20effect%20transistors%20with%20h-BN%20gate%20dielectric%20and%20graphite%20gate&rft.jtitle=Applied%20physics%20letters&rft.au=Gui,%20Qingzhong&rft.date=2022-11-21&rft.volume=121&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0117263&rft_dat=%3Cproquest_scita%3E2738271832%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738271832&rft_id=info:pmid/&rfr_iscdi=true |