Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate

Diamond has compelling advantages in power devices as an ultrawide-bandgap semiconductor. Using first-principles calculations, we systematically investigate the structural and electronic properties of hydrogen-terminated diamond (H-diamond) (111) van der Waals (vdW) heterostructures with graphite an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-11, Vol.121 (21)
Hauptverfasser: Gui, Qingzhong, Wang, Zhen, Cheng, Chunmin, Zha, Xiaoming, Robertson, John, Liu, Sheng, Zhang, Zhaofu, Guo, Yuzheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Applied physics letters
container_volume 121
creator Gui, Qingzhong
Wang, Zhen
Cheng, Chunmin
Zha, Xiaoming
Robertson, John
Liu, Sheng
Zhang, Zhaofu
Guo, Yuzheng
description Diamond has compelling advantages in power devices as an ultrawide-bandgap semiconductor. Using first-principles calculations, we systematically investigate the structural and electronic properties of hydrogen-terminated diamond (H-diamond) (111) van der Waals (vdW) heterostructures with graphite and hexagonal boron nitride (h-BN) layers. The graphite/H-diamond heterostructure forms a p-type ohmic contact and the p-type Schottky barrier decreases as the number of graphite layers increases. In contrast, the h-BN/H-diamond heterostructure exhibits semiconducting properties and a tunable type-II band alignment. Moreover, the charge transfer is concentrated at the interface with a large amount of charge accumulating on the C–H bonds on the H-diamond (111) surface, indicating the formation of a highly conductive two-dimensional hole gas (2DHG) layer. In a similar vein, the promising structural and electronic properties of graphite, h-BN, and H-diamond (111) in the graphite/h-BN/H-diamond (111) vdW heterostructure are well preserved upon their contact, while such heterostructure exhibits flexible band offset and Schottky contacts. These studies of interface engineering for H-diamond heterostructures are expected to advance the application of 2D materials in H-diamond field effect transistors, which is an important development in the design of surface transfer doping for 2DHG H-diamond devices.
doi_str_mv 10.1063/5.0117263
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2738271832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738271832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-bfca2ef06d0c9801f4bc2e899e53db2d20e8b2cf286694ce25dfccdbb2098bad3</originalsourceid><addsrcrecordid>eNqd0M1KAzEQAOAgCtbqwTcIeFLYmp_ubvaoRa1Q9FLPSzaZ7Ka0yZqkSo--uVta8O5pmJlvZmAQuqZkQknB7_MJobRkBT9BI0rKMuOUilM0IoTwrKhyeo4uYlwNac44H6GfZQc-QLJKrnFMW73D3uDUAbYuQTBSAQbXWgcQrGux8QHPM23lxjuNjYW1xmAMqIRTkC7amHyI-NumDnfZ4xtuZQKsBzeQYBWWw1gbZN_Zob5vXqIzI9cRro5xjD6en5azebZ4f3mdPSwyxQuWssYoycCQQhNVCULNtFEMRFVBznXDNCMgGqYME0VRTRWwXBuldNMwUolGaj5GN4e9ffCfW4ipXvltcMPJmpVcsJIKzgZ1e1Aq-BgDmLoPdiPDrqak3n-4zuvjhwd7d7BR2SST9e5_-MuHP1j32vBfLUCMMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738271832</pqid></control><display><type>article</type><title>Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Gui, Qingzhong ; Wang, Zhen ; Cheng, Chunmin ; Zha, Xiaoming ; Robertson, John ; Liu, Sheng ; Zhang, Zhaofu ; Guo, Yuzheng</creator><creatorcontrib>Gui, Qingzhong ; Wang, Zhen ; Cheng, Chunmin ; Zha, Xiaoming ; Robertson, John ; Liu, Sheng ; Zhang, Zhaofu ; Guo, Yuzheng</creatorcontrib><description>Diamond has compelling advantages in power devices as an ultrawide-bandgap semiconductor. Using first-principles calculations, we systematically investigate the structural and electronic properties of hydrogen-terminated diamond (H-diamond) (111) van der Waals (vdW) heterostructures with graphite and hexagonal boron nitride (h-BN) layers. The graphite/H-diamond heterostructure forms a p-type ohmic contact and the p-type Schottky barrier decreases as the number of graphite layers increases. In contrast, the h-BN/H-diamond heterostructure exhibits semiconducting properties and a tunable type-II band alignment. Moreover, the charge transfer is concentrated at the interface with a large amount of charge accumulating on the C–H bonds on the H-diamond (111) surface, indicating the formation of a highly conductive two-dimensional hole gas (2DHG) layer. In a similar vein, the promising structural and electronic properties of graphite, h-BN, and H-diamond (111) in the graphite/h-BN/H-diamond (111) vdW heterostructure are well preserved upon their contact, while such heterostructure exhibits flexible band offset and Schottky contacts. These studies of interface engineering for H-diamond heterostructures are expected to advance the application of 2D materials in H-diamond field effect transistors, which is an important development in the design of surface transfer doping for 2DHG H-diamond devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0117263</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Boron nitride ; Charge transfer ; Contact resistance ; Diamonds ; Electronic devices ; Field effect transistors ; First principles ; Graphite ; Heterostructures ; Semiconductor devices ; Transistors ; Two dimensional materials</subject><ispartof>Applied physics letters, 2022-11, Vol.121 (21)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-bfca2ef06d0c9801f4bc2e899e53db2d20e8b2cf286694ce25dfccdbb2098bad3</citedby><cites>FETCH-LOGICAL-c362t-bfca2ef06d0c9801f4bc2e899e53db2d20e8b2cf286694ce25dfccdbb2098bad3</cites><orcidid>0000-0002-1102-891X ; 0000-0001-6558-528X ; 0000-0001-5172-6096 ; 0000-0002-1406-1256 ; 0000-0003-4997-4271 ; 0000-0003-2334-1804 ; 0000-0001-9224-3816 ; 0000-0001-6033-078X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0117263$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Gui, Qingzhong</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Cheng, Chunmin</creatorcontrib><creatorcontrib>Zha, Xiaoming</creatorcontrib><creatorcontrib>Robertson, John</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Zhang, Zhaofu</creatorcontrib><creatorcontrib>Guo, Yuzheng</creatorcontrib><title>Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate</title><title>Applied physics letters</title><description>Diamond has compelling advantages in power devices as an ultrawide-bandgap semiconductor. Using first-principles calculations, we systematically investigate the structural and electronic properties of hydrogen-terminated diamond (H-diamond) (111) van der Waals (vdW) heterostructures with graphite and hexagonal boron nitride (h-BN) layers. The graphite/H-diamond heterostructure forms a p-type ohmic contact and the p-type Schottky barrier decreases as the number of graphite layers increases. In contrast, the h-BN/H-diamond heterostructure exhibits semiconducting properties and a tunable type-II band alignment. Moreover, the charge transfer is concentrated at the interface with a large amount of charge accumulating on the C–H bonds on the H-diamond (111) surface, indicating the formation of a highly conductive two-dimensional hole gas (2DHG) layer. In a similar vein, the promising structural and electronic properties of graphite, h-BN, and H-diamond (111) in the graphite/h-BN/H-diamond (111) vdW heterostructure are well preserved upon their contact, while such heterostructure exhibits flexible band offset and Schottky contacts. These studies of interface engineering for H-diamond heterostructures are expected to advance the application of 2D materials in H-diamond field effect transistors, which is an important development in the design of surface transfer doping for 2DHG H-diamond devices.</description><subject>Applied physics</subject><subject>Boron nitride</subject><subject>Charge transfer</subject><subject>Contact resistance</subject><subject>Diamonds</subject><subject>Electronic devices</subject><subject>Field effect transistors</subject><subject>First principles</subject><subject>Graphite</subject><subject>Heterostructures</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><subject>Two dimensional materials</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEQAOAgCtbqwTcIeFLYmp_ubvaoRa1Q9FLPSzaZ7Ka0yZqkSo--uVta8O5pmJlvZmAQuqZkQknB7_MJobRkBT9BI0rKMuOUilM0IoTwrKhyeo4uYlwNac44H6GfZQc-QLJKrnFMW73D3uDUAbYuQTBSAQbXWgcQrGux8QHPM23lxjuNjYW1xmAMqIRTkC7amHyI-NumDnfZ4xtuZQKsBzeQYBWWw1gbZN_Zob5vXqIzI9cRro5xjD6en5azebZ4f3mdPSwyxQuWssYoycCQQhNVCULNtFEMRFVBznXDNCMgGqYME0VRTRWwXBuldNMwUolGaj5GN4e9ffCfW4ipXvltcMPJmpVcsJIKzgZ1e1Aq-BgDmLoPdiPDrqak3n-4zuvjhwd7d7BR2SST9e5_-MuHP1j32vBfLUCMMQ</recordid><startdate>20221121</startdate><enddate>20221121</enddate><creator>Gui, Qingzhong</creator><creator>Wang, Zhen</creator><creator>Cheng, Chunmin</creator><creator>Zha, Xiaoming</creator><creator>Robertson, John</creator><creator>Liu, Sheng</creator><creator>Zhang, Zhaofu</creator><creator>Guo, Yuzheng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1102-891X</orcidid><orcidid>https://orcid.org/0000-0001-6558-528X</orcidid><orcidid>https://orcid.org/0000-0001-5172-6096</orcidid><orcidid>https://orcid.org/0000-0002-1406-1256</orcidid><orcidid>https://orcid.org/0000-0003-4997-4271</orcidid><orcidid>https://orcid.org/0000-0003-2334-1804</orcidid><orcidid>https://orcid.org/0000-0001-9224-3816</orcidid><orcidid>https://orcid.org/0000-0001-6033-078X</orcidid></search><sort><creationdate>20221121</creationdate><title>Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate</title><author>Gui, Qingzhong ; Wang, Zhen ; Cheng, Chunmin ; Zha, Xiaoming ; Robertson, John ; Liu, Sheng ; Zhang, Zhaofu ; Guo, Yuzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-bfca2ef06d0c9801f4bc2e899e53db2d20e8b2cf286694ce25dfccdbb2098bad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Boron nitride</topic><topic>Charge transfer</topic><topic>Contact resistance</topic><topic>Diamonds</topic><topic>Electronic devices</topic><topic>Field effect transistors</topic><topic>First principles</topic><topic>Graphite</topic><topic>Heterostructures</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gui, Qingzhong</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Cheng, Chunmin</creatorcontrib><creatorcontrib>Zha, Xiaoming</creatorcontrib><creatorcontrib>Robertson, John</creatorcontrib><creatorcontrib>Liu, Sheng</creatorcontrib><creatorcontrib>Zhang, Zhaofu</creatorcontrib><creatorcontrib>Guo, Yuzheng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gui, Qingzhong</au><au>Wang, Zhen</au><au>Cheng, Chunmin</au><au>Zha, Xiaoming</au><au>Robertson, John</au><au>Liu, Sheng</au><au>Zhang, Zhaofu</au><au>Guo, Yuzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate</atitle><jtitle>Applied physics letters</jtitle><date>2022-11-21</date><risdate>2022</risdate><volume>121</volume><issue>21</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Diamond has compelling advantages in power devices as an ultrawide-bandgap semiconductor. Using first-principles calculations, we systematically investigate the structural and electronic properties of hydrogen-terminated diamond (H-diamond) (111) van der Waals (vdW) heterostructures with graphite and hexagonal boron nitride (h-BN) layers. The graphite/H-diamond heterostructure forms a p-type ohmic contact and the p-type Schottky barrier decreases as the number of graphite layers increases. In contrast, the h-BN/H-diamond heterostructure exhibits semiconducting properties and a tunable type-II band alignment. Moreover, the charge transfer is concentrated at the interface with a large amount of charge accumulating on the C–H bonds on the H-diamond (111) surface, indicating the formation of a highly conductive two-dimensional hole gas (2DHG) layer. In a similar vein, the promising structural and electronic properties of graphite, h-BN, and H-diamond (111) in the graphite/h-BN/H-diamond (111) vdW heterostructure are well preserved upon their contact, while such heterostructure exhibits flexible band offset and Schottky contacts. These studies of interface engineering for H-diamond heterostructures are expected to advance the application of 2D materials in H-diamond field effect transistors, which is an important development in the design of surface transfer doping for 2DHG H-diamond devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0117263</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1102-891X</orcidid><orcidid>https://orcid.org/0000-0001-6558-528X</orcidid><orcidid>https://orcid.org/0000-0001-5172-6096</orcidid><orcidid>https://orcid.org/0000-0002-1406-1256</orcidid><orcidid>https://orcid.org/0000-0003-4997-4271</orcidid><orcidid>https://orcid.org/0000-0003-2334-1804</orcidid><orcidid>https://orcid.org/0000-0001-9224-3816</orcidid><orcidid>https://orcid.org/0000-0001-6033-078X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-11, Vol.121 (21)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2738271832
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Boron nitride
Charge transfer
Contact resistance
Diamonds
Electronic devices
Field effect transistors
First principles
Graphite
Heterostructures
Semiconductor devices
Transistors
Two dimensional materials
title Theoretical study of the interface engineering for H-diamond field effect transistors with h-BN gate dielectric and graphite gate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20of%20the%20interface%20engineering%20for%20H-diamond%20field%20effect%20transistors%20with%20h-BN%20gate%20dielectric%20and%20graphite%20gate&rft.jtitle=Applied%20physics%20letters&rft.au=Gui,%20Qingzhong&rft.date=2022-11-21&rft.volume=121&rft.issue=21&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0117263&rft_dat=%3Cproquest_scita%3E2738271832%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738271832&rft_id=info:pmid/&rfr_iscdi=true