Automatic Classification of Construction Work Codes in Bill of Quantities of National Roadway Based on Text Analysis
AbstractThe construction work classification code is a crucial index for consistently collecting unit cost data from the bill of quantities (BOQ). Appropriate classification codes assigned to detailed construction work item descriptions are required to verify project cost and for quality control. Ho...
Gespeichert in:
Veröffentlicht in: | Journal of construction engineering and management 2023-02, Vol.149 (2) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of construction engineering and management |
container_volume | 149 |
creator | Lee, Gyueun Lee, Gitaek Chi, Seokho Oh, Sewook |
description | AbstractThe construction work classification code is a crucial index for consistently collecting unit cost data from the bill of quantities (BOQ). Appropriate classification codes assigned to detailed construction work item descriptions are required to verify project cost and for quality control. However, the codification system is complicated and time consuming for estimators to follow. This study proposes a framework to recognize the text of detailed construction work item descriptions in the BOQ and automatically assign the most similar work classification code. The automatic assignment algorithm was designed to score the similarity of the tokenized words in the work item description based on whether they contain the same word. The framework was experimented with using the national roadway BOQ; this BOQ is used for the procurement process in South Korea. It transformed work item descriptions from unstandardized BOQs into standardized data with more than 91.12% accuracy. The results of this study can be used as a prerequisite step for standardizing construction life cycle cost data and the automatic generation of BOQs. |
doi_str_mv | 10.1061/JCEMD4.COENG-12730 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2738073689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2738073689</sourcerecordid><originalsourceid>FETCH-LOGICAL-a245t-5f8d882b62ae4506684ca8b5bbc3d80fdd80b0bf079fa6f723ab2a0a4db750e13</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhoMoOKd_wFPAc12atGl63OqcytxQJh7L1zaBzK6ZTYru35u1gjcvCe-X9_kID0LXIbkNCQ8nT9n8-S66zdbz1SIIacLICRqFacSCRHB6ikYkYSxIGY_O0YW1W0LCiKfxCLlp58wOnC5xVoO1WunSJ9Ngo3BmGuvaruzzu2k__KSSFusGz3RdHysvHTROO-2nPq16FGr8aqD6ggOegZUV9vRGfjs89U8Hq-0lOlNQW3n1e4_R2_18kz0Ey_XiMZsuA6BR7IJYiUoIWnAKMooJ5yIqQRRxUZSsEkRV_ihIoUiSKuAqoQwKCgSiqkhiIkM2RjfD3n1rPjtpXb41Xes_YXOvSHgnXKS-RYdW2RprW6nyfat30B7ykORHu_lgN-_t5r1dD00GCGwp_9b-Q_wA7Xd-AQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2738073689</pqid></control><display><type>article</type><title>Automatic Classification of Construction Work Codes in Bill of Quantities of National Roadway Based on Text Analysis</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Lee, Gyueun ; Lee, Gitaek ; Chi, Seokho ; Oh, Sewook</creator><creatorcontrib>Lee, Gyueun ; Lee, Gitaek ; Chi, Seokho ; Oh, Sewook</creatorcontrib><description>AbstractThe construction work classification code is a crucial index for consistently collecting unit cost data from the bill of quantities (BOQ). Appropriate classification codes assigned to detailed construction work item descriptions are required to verify project cost and for quality control. However, the codification system is complicated and time consuming for estimators to follow. This study proposes a framework to recognize the text of detailed construction work item descriptions in the BOQ and automatically assign the most similar work classification code. The automatic assignment algorithm was designed to score the similarity of the tokenized words in the work item description based on whether they contain the same word. The framework was experimented with using the national roadway BOQ; this BOQ is used for the procurement process in South Korea. It transformed work item descriptions from unstandardized BOQs into standardized data with more than 91.12% accuracy. The results of this study can be used as a prerequisite step for standardizing construction life cycle cost data and the automatic generation of BOQs.</description><identifier>ISSN: 0733-9364</identifier><identifier>EISSN: 1943-7862</identifier><identifier>DOI: 10.1061/JCEMD4.COENG-12730</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Algorithms ; Bills of quantities ; Classification ; Codification ; Descriptions ; Life cycle costs ; Quality control ; Roads ; Technical Papers</subject><ispartof>Journal of construction engineering and management, 2023-02, Vol.149 (2)</ispartof><rights>This work is made available under the terms of the Creative Commons Attribution 4.0 International license, .</rights><rights>Copyright American Society of Civil Engineers Feb 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a245t-5f8d882b62ae4506684ca8b5bbc3d80fdd80b0bf079fa6f723ab2a0a4db750e13</citedby><cites>FETCH-LOGICAL-a245t-5f8d882b62ae4506684ca8b5bbc3d80fdd80b0bf079fa6f723ab2a0a4db750e13</cites><orcidid>0000-0002-0409-5268 ; 0000-0001-7890-4577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/JCEMD4.COENG-12730$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/JCEMD4.COENG-12730$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,76193,76201</link.rule.ids></links><search><creatorcontrib>Lee, Gyueun</creatorcontrib><creatorcontrib>Lee, Gitaek</creatorcontrib><creatorcontrib>Chi, Seokho</creatorcontrib><creatorcontrib>Oh, Sewook</creatorcontrib><title>Automatic Classification of Construction Work Codes in Bill of Quantities of National Roadway Based on Text Analysis</title><title>Journal of construction engineering and management</title><description>AbstractThe construction work classification code is a crucial index for consistently collecting unit cost data from the bill of quantities (BOQ). Appropriate classification codes assigned to detailed construction work item descriptions are required to verify project cost and for quality control. However, the codification system is complicated and time consuming for estimators to follow. This study proposes a framework to recognize the text of detailed construction work item descriptions in the BOQ and automatically assign the most similar work classification code. The automatic assignment algorithm was designed to score the similarity of the tokenized words in the work item description based on whether they contain the same word. The framework was experimented with using the national roadway BOQ; this BOQ is used for the procurement process in South Korea. It transformed work item descriptions from unstandardized BOQs into standardized data with more than 91.12% accuracy. The results of this study can be used as a prerequisite step for standardizing construction life cycle cost data and the automatic generation of BOQs.</description><subject>Algorithms</subject><subject>Bills of quantities</subject><subject>Classification</subject><subject>Codification</subject><subject>Descriptions</subject><subject>Life cycle costs</subject><subject>Quality control</subject><subject>Roads</subject><subject>Technical Papers</subject><issn>0733-9364</issn><issn>1943-7862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAYhoMoOKd_wFPAc12atGl63OqcytxQJh7L1zaBzK6ZTYru35u1gjcvCe-X9_kID0LXIbkNCQ8nT9n8-S66zdbz1SIIacLICRqFacSCRHB6ikYkYSxIGY_O0YW1W0LCiKfxCLlp58wOnC5xVoO1WunSJ9Ngo3BmGuvaruzzu2k__KSSFusGz3RdHysvHTROO-2nPq16FGr8aqD6ggOegZUV9vRGfjs89U8Hq-0lOlNQW3n1e4_R2_18kz0Ey_XiMZsuA6BR7IJYiUoIWnAKMooJ5yIqQRRxUZSsEkRV_ihIoUiSKuAqoQwKCgSiqkhiIkM2RjfD3n1rPjtpXb41Xes_YXOvSHgnXKS-RYdW2RprW6nyfat30B7ykORHu_lgN-_t5r1dD00GCGwp_9b-Q_wA7Xd-AQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Lee, Gyueun</creator><creator>Lee, Gitaek</creator><creator>Chi, Seokho</creator><creator>Oh, Sewook</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-0409-5268</orcidid><orcidid>https://orcid.org/0000-0001-7890-4577</orcidid></search><sort><creationdate>20230201</creationdate><title>Automatic Classification of Construction Work Codes in Bill of Quantities of National Roadway Based on Text Analysis</title><author>Lee, Gyueun ; Lee, Gitaek ; Chi, Seokho ; Oh, Sewook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a245t-5f8d882b62ae4506684ca8b5bbc3d80fdd80b0bf079fa6f723ab2a0a4db750e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Bills of quantities</topic><topic>Classification</topic><topic>Codification</topic><topic>Descriptions</topic><topic>Life cycle costs</topic><topic>Quality control</topic><topic>Roads</topic><topic>Technical Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Gyueun</creatorcontrib><creatorcontrib>Lee, Gitaek</creatorcontrib><creatorcontrib>Chi, Seokho</creatorcontrib><creatorcontrib>Oh, Sewook</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of construction engineering and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Gyueun</au><au>Lee, Gitaek</au><au>Chi, Seokho</au><au>Oh, Sewook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic Classification of Construction Work Codes in Bill of Quantities of National Roadway Based on Text Analysis</atitle><jtitle>Journal of construction engineering and management</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>149</volume><issue>2</issue><issn>0733-9364</issn><eissn>1943-7862</eissn><abstract>AbstractThe construction work classification code is a crucial index for consistently collecting unit cost data from the bill of quantities (BOQ). Appropriate classification codes assigned to detailed construction work item descriptions are required to verify project cost and for quality control. However, the codification system is complicated and time consuming for estimators to follow. This study proposes a framework to recognize the text of detailed construction work item descriptions in the BOQ and automatically assign the most similar work classification code. The automatic assignment algorithm was designed to score the similarity of the tokenized words in the work item description based on whether they contain the same word. The framework was experimented with using the national roadway BOQ; this BOQ is used for the procurement process in South Korea. It transformed work item descriptions from unstandardized BOQs into standardized data with more than 91.12% accuracy. The results of this study can be used as a prerequisite step for standardizing construction life cycle cost data and the automatic generation of BOQs.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/JCEMD4.COENG-12730</doi><orcidid>https://orcid.org/0000-0002-0409-5268</orcidid><orcidid>https://orcid.org/0000-0001-7890-4577</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9364 |
ispartof | Journal of construction engineering and management, 2023-02, Vol.149 (2) |
issn | 0733-9364 1943-7862 |
language | eng |
recordid | cdi_proquest_journals_2738073689 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Algorithms Bills of quantities Classification Codification Descriptions Life cycle costs Quality control Roads Technical Papers |
title | Automatic Classification of Construction Work Codes in Bill of Quantities of National Roadway Based on Text Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20Classification%20of%20Construction%20Work%20Codes%20in%20Bill%20of%20Quantities%20of%20National%20Roadway%20Based%20on%20Text%20Analysis&rft.jtitle=Journal%20of%20construction%20engineering%20and%20management&rft.au=Lee,%20Gyueun&rft.date=2023-02-01&rft.volume=149&rft.issue=2&rft.issn=0733-9364&rft.eissn=1943-7862&rft_id=info:doi/10.1061/JCEMD4.COENG-12730&rft_dat=%3Cproquest_cross%3E2738073689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2738073689&rft_id=info:pmid/&rfr_iscdi=true |