Development of Verification Device for Multitarget Radar Velocimeter Based on Echo Signal Simulation Technology

Speeding is one of the leading causes of traffic crashes worldwide. Radar velocimeter is widely used in the capture monitoring of road overspeed violations, which can effectively reduce the probability of traffic accidents and protect people’s life and property safety to the greatest extent. As a ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2022-11, Vol.2022, p.1-18
Hauptverfasser: Shao, Jianwen, Chen, Wenhua, Shen, Xiaomin, Pan, Jun, Zhao, Cunbin, Zhao, Chenxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Speeding is one of the leading causes of traffic crashes worldwide. Radar velocimeter is widely used in the capture monitoring of road overspeed violations, which can effectively reduce the probability of traffic accidents and protect people’s life and property safety to the greatest extent. As a new type of radar velocimeter, multitarget radar velocimeter (MTRV) can monitor the speed of more than two vehicles at the same time. However, the verification method and device of MTRV’s performance need to be studied. In order to solve the problem of performance verification for MTRV, a verification device based on echo signal simulation technology is developed in this paper. The measurement mechanism of MTRV with different performance including velocity, distance, and angle is first introduced. Then, a verification method based on the echo signal simulation technology is proposed. The verification device can receive the emission signal of MTRV and process the signal by echo simulation technology, including target generation, Doppler frequency shift, time delay, and angel control, and targets are simulated with nominal velocity, distance, and angle value. The processed echo signal with simulated nominal parameter values is reflected to the MTRV. After the echo signal is received and processed by MTRV, the measurement values of simulated velocity, distance, and angle for targets are obtained. Comparing the measured values of the MTRV with the simulated nominal values of the verification device, the measurement error of MTRV is obtained. The verification device of MTRV is realized to verify the accuracy and reliability of the MTRV measurement results. The simulated velocity range of the verification device is up to (-300~300) km/h, and the simulated distance range of the verification device is up to (10~45) m when the simulated incident angle range was within the range of (-60~60)°. The simulation target generation for the two targets of the device is also verified. And the maximum permissible error (MPE) of the simulated velocity was ±0.05 km/h, the MPE of simulated distance is ±0.3 m, and the MPE of simulated angle is ±0.2°. Finally, the verification and uncertainty evaluation results of the MTRV sample validated the effectiveness and feasibility of the proposed verification method and the developed verification device of MTRV.
ISSN:1687-725X
1687-7268
DOI:10.1155/2022/7365881