Suppression of intermediate antiferroelectric phase in sub-micron grain size Na0.5Bi0.5TiO3 ceramics

Lead-free NBT ceramics with average grain sizes ranging from sub-micron (0.38 µm), micron (1.23 µm) and large-micron (3.65 µm) were prepared and the influence of grain size on structural, dielectric and ferroelectric properties are discussed in the present work. The effect of grain size on the intri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2022-11, Vol.33 (33), p.25006-25024
Hauptverfasser: Venkidu, L., Jain Ruth, D. E., Veera Gajendra Babu, M., Esther Rubavathi, P., Dhayanithi, D., Giridharan, N. V., Sundarakannan, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25024
container_issue 33
container_start_page 25006
container_title Journal of materials science. Materials in electronics
container_volume 33
creator Venkidu, L.
Jain Ruth, D. E.
Veera Gajendra Babu, M.
Esther Rubavathi, P.
Dhayanithi, D.
Giridharan, N. V.
Sundarakannan, B.
description Lead-free NBT ceramics with average grain sizes ranging from sub-micron (0.38 µm), micron (1.23 µm) and large-micron (3.65 µm) were prepared and the influence of grain size on structural, dielectric and ferroelectric properties are discussed in the present work. The effect of grain size on the intrinsic properties such as octahedral tilting, bond length, bond angle, octahedral distortion, crystallite size, lattice strain and lattice parameters were measured. Herein, the structural and the morphological properties at different sintering times were in direct congruence with the temperature-dependent dielectric and ferroelectric response of pure NBT ceramics and an intermediate antiferroelectric (AFE) phase suppressed in sub-micron NBT. This unusual feature of sub-micron NBT was thoroughly studied and distinguished from large-grain NBT ceramics. Based on the temperature-dependent P–E loops the maximum adiabatic change in temperature ∆T max  = − 0.81 K was obtained at the field strength of 55 kV/cm in micron NBT. Further, the large energy storage density of about W rec  = 0.55 J/cm 3 was achieved by AFE phase transition in micron NBT through P–E loop data. Because of the coexistence of electro-caloric effect (ECE) and energy storage properties, the micron NBT was found to be the optimum grain size corresponding to the best dielectric and ferroelectric properties and therefore this porous-free NBT was suitable for application in functional devices.
doi_str_mv 10.1007/s10854-022-09209-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737807133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737807133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-47e84dccb5227aba60ef2a319262b146f6fe868e8b34f6d1704a1cf0a43fde8d3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhF4uyyfiR2jlDxkip6oEjcLCdZF1dtEuz0AL8elyBx47Irrb6ZHQ0hlwxmDEBdRwY6lxQ4p1ByKCk_IhOWK0Gl5m_HZAJlrqjMOT8lZzFuAKCQQk9I87Lv-4Ax-q7NOpf5dsCww8bbATPbDt5hCB1usR6Cr7P-3UZMUBb3Fd35OiTVOtjDwX9h9mxhlt_6NFZ-KbIag01QPCcnzm4jXvzuKXm9v1vNH-li-fA0v1nQmstyoFKhlk1dVymmspUtAB23gpW84BWThSsc6kKjroR0RcMUSMtqB1YK16BuxJRcjb596D72GAez6fahTS8NV0JpUEyIRPGRSuljDOhMH_zOhk_DwBzaNGObJrVpfto0PInEKIoJbtcY_qz_UX0D4GV4QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737807133</pqid></control><display><type>article</type><title>Suppression of intermediate antiferroelectric phase in sub-micron grain size Na0.5Bi0.5TiO3 ceramics</title><source>SpringerLink Journals</source><creator>Venkidu, L. ; Jain Ruth, D. E. ; Veera Gajendra Babu, M. ; Esther Rubavathi, P. ; Dhayanithi, D. ; Giridharan, N. V. ; Sundarakannan, B.</creator><creatorcontrib>Venkidu, L. ; Jain Ruth, D. E. ; Veera Gajendra Babu, M. ; Esther Rubavathi, P. ; Dhayanithi, D. ; Giridharan, N. V. ; Sundarakannan, B.</creatorcontrib><description>Lead-free NBT ceramics with average grain sizes ranging from sub-micron (0.38 µm), micron (1.23 µm) and large-micron (3.65 µm) were prepared and the influence of grain size on structural, dielectric and ferroelectric properties are discussed in the present work. The effect of grain size on the intrinsic properties such as octahedral tilting, bond length, bond angle, octahedral distortion, crystallite size, lattice strain and lattice parameters were measured. Herein, the structural and the morphological properties at different sintering times were in direct congruence with the temperature-dependent dielectric and ferroelectric response of pure NBT ceramics and an intermediate antiferroelectric (AFE) phase suppressed in sub-micron NBT. This unusual feature of sub-micron NBT was thoroughly studied and distinguished from large-grain NBT ceramics. Based on the temperature-dependent P–E loops the maximum adiabatic change in temperature ∆T max  = − 0.81 K was obtained at the field strength of 55 kV/cm in micron NBT. Further, the large energy storage density of about W rec  = 0.55 J/cm 3 was achieved by AFE phase transition in micron NBT through P–E loop data. Because of the coexistence of electro-caloric effect (ECE) and energy storage properties, the micron NBT was found to be the optimum grain size corresponding to the best dielectric and ferroelectric properties and therefore this porous-free NBT was suitable for application in functional devices.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-022-09209-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Antiferroelectricity ; Bismuth titanate ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallites ; Energy storage ; Ferroelectric materials ; Field strength ; Grain size ; Lattice parameters ; Lattice strain ; Lead free ; Materials Science ; Optical and Electronic Materials ; Phase transitions ; Sintering (powder metallurgy) ; Temperature dependence</subject><ispartof>Journal of materials science. Materials in electronics, 2022-11, Vol.33 (33), p.25006-25024</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-47e84dccb5227aba60ef2a319262b146f6fe868e8b34f6d1704a1cf0a43fde8d3</citedby><cites>FETCH-LOGICAL-c249t-47e84dccb5227aba60ef2a319262b146f6fe868e8b34f6d1704a1cf0a43fde8d3</cites><orcidid>0000-0002-1766-3228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-022-09209-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-022-09209-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Venkidu, L.</creatorcontrib><creatorcontrib>Jain Ruth, D. E.</creatorcontrib><creatorcontrib>Veera Gajendra Babu, M.</creatorcontrib><creatorcontrib>Esther Rubavathi, P.</creatorcontrib><creatorcontrib>Dhayanithi, D.</creatorcontrib><creatorcontrib>Giridharan, N. V.</creatorcontrib><creatorcontrib>Sundarakannan, B.</creatorcontrib><title>Suppression of intermediate antiferroelectric phase in sub-micron grain size Na0.5Bi0.5TiO3 ceramics</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Lead-free NBT ceramics with average grain sizes ranging from sub-micron (0.38 µm), micron (1.23 µm) and large-micron (3.65 µm) were prepared and the influence of grain size on structural, dielectric and ferroelectric properties are discussed in the present work. The effect of grain size on the intrinsic properties such as octahedral tilting, bond length, bond angle, octahedral distortion, crystallite size, lattice strain and lattice parameters were measured. Herein, the structural and the morphological properties at different sintering times were in direct congruence with the temperature-dependent dielectric and ferroelectric response of pure NBT ceramics and an intermediate antiferroelectric (AFE) phase suppressed in sub-micron NBT. This unusual feature of sub-micron NBT was thoroughly studied and distinguished from large-grain NBT ceramics. Based on the temperature-dependent P–E loops the maximum adiabatic change in temperature ∆T max  = − 0.81 K was obtained at the field strength of 55 kV/cm in micron NBT. Further, the large energy storage density of about W rec  = 0.55 J/cm 3 was achieved by AFE phase transition in micron NBT through P–E loop data. Because of the coexistence of electro-caloric effect (ECE) and energy storage properties, the micron NBT was found to be the optimum grain size corresponding to the best dielectric and ferroelectric properties and therefore this porous-free NBT was suitable for application in functional devices.</description><subject>Antiferroelectricity</subject><subject>Bismuth titanate</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Energy storage</subject><subject>Ferroelectric materials</subject><subject>Field strength</subject><subject>Grain size</subject><subject>Lattice parameters</subject><subject>Lattice strain</subject><subject>Lead free</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Phase transitions</subject><subject>Sintering (powder metallurgy)</subject><subject>Temperature dependence</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhF4uyyfiR2jlDxkip6oEjcLCdZF1dtEuz0AL8elyBx47Irrb6ZHQ0hlwxmDEBdRwY6lxQ4p1ByKCk_IhOWK0Gl5m_HZAJlrqjMOT8lZzFuAKCQQk9I87Lv-4Ax-q7NOpf5dsCww8bbATPbDt5hCB1usR6Cr7P-3UZMUBb3Fd35OiTVOtjDwX9h9mxhlt_6NFZ-KbIag01QPCcnzm4jXvzuKXm9v1vNH-li-fA0v1nQmstyoFKhlk1dVymmspUtAB23gpW84BWThSsc6kKjroR0RcMUSMtqB1YK16BuxJRcjb596D72GAez6fahTS8NV0JpUEyIRPGRSuljDOhMH_zOhk_DwBzaNGObJrVpfto0PInEKIoJbtcY_qz_UX0D4GV4QQ</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Venkidu, L.</creator><creator>Jain Ruth, D. E.</creator><creator>Veera Gajendra Babu, M.</creator><creator>Esther Rubavathi, P.</creator><creator>Dhayanithi, D.</creator><creator>Giridharan, N. V.</creator><creator>Sundarakannan, B.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-1766-3228</orcidid></search><sort><creationdate>20221101</creationdate><title>Suppression of intermediate antiferroelectric phase in sub-micron grain size Na0.5Bi0.5TiO3 ceramics</title><author>Venkidu, L. ; Jain Ruth, D. E. ; Veera Gajendra Babu, M. ; Esther Rubavathi, P. ; Dhayanithi, D. ; Giridharan, N. V. ; Sundarakannan, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-47e84dccb5227aba60ef2a319262b146f6fe868e8b34f6d1704a1cf0a43fde8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferroelectricity</topic><topic>Bismuth titanate</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Energy storage</topic><topic>Ferroelectric materials</topic><topic>Field strength</topic><topic>Grain size</topic><topic>Lattice parameters</topic><topic>Lattice strain</topic><topic>Lead free</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Phase transitions</topic><topic>Sintering (powder metallurgy)</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkidu, L.</creatorcontrib><creatorcontrib>Jain Ruth, D. E.</creatorcontrib><creatorcontrib>Veera Gajendra Babu, M.</creatorcontrib><creatorcontrib>Esther Rubavathi, P.</creatorcontrib><creatorcontrib>Dhayanithi, D.</creatorcontrib><creatorcontrib>Giridharan, N. V.</creatorcontrib><creatorcontrib>Sundarakannan, B.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkidu, L.</au><au>Jain Ruth, D. E.</au><au>Veera Gajendra Babu, M.</au><au>Esther Rubavathi, P.</au><au>Dhayanithi, D.</au><au>Giridharan, N. V.</au><au>Sundarakannan, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppression of intermediate antiferroelectric phase in sub-micron grain size Na0.5Bi0.5TiO3 ceramics</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>33</volume><issue>33</issue><spage>25006</spage><epage>25024</epage><pages>25006-25024</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Lead-free NBT ceramics with average grain sizes ranging from sub-micron (0.38 µm), micron (1.23 µm) and large-micron (3.65 µm) were prepared and the influence of grain size on structural, dielectric and ferroelectric properties are discussed in the present work. The effect of grain size on the intrinsic properties such as octahedral tilting, bond length, bond angle, octahedral distortion, crystallite size, lattice strain and lattice parameters were measured. Herein, the structural and the morphological properties at different sintering times were in direct congruence with the temperature-dependent dielectric and ferroelectric response of pure NBT ceramics and an intermediate antiferroelectric (AFE) phase suppressed in sub-micron NBT. This unusual feature of sub-micron NBT was thoroughly studied and distinguished from large-grain NBT ceramics. Based on the temperature-dependent P–E loops the maximum adiabatic change in temperature ∆T max  = − 0.81 K was obtained at the field strength of 55 kV/cm in micron NBT. Further, the large energy storage density of about W rec  = 0.55 J/cm 3 was achieved by AFE phase transition in micron NBT through P–E loop data. Because of the coexistence of electro-caloric effect (ECE) and energy storage properties, the micron NBT was found to be the optimum grain size corresponding to the best dielectric and ferroelectric properties and therefore this porous-free NBT was suitable for application in functional devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-022-09209-2</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1766-3228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2022-11, Vol.33 (33), p.25006-25024
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2737807133
source SpringerLink Journals
subjects Antiferroelectricity
Bismuth titanate
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallites
Energy storage
Ferroelectric materials
Field strength
Grain size
Lattice parameters
Lattice strain
Lead free
Materials Science
Optical and Electronic Materials
Phase transitions
Sintering (powder metallurgy)
Temperature dependence
title Suppression of intermediate antiferroelectric phase in sub-micron grain size Na0.5Bi0.5TiO3 ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppression%20of%20intermediate%20antiferroelectric%20phase%20in%20sub-micron%20grain%20size%20Na0.5Bi0.5TiO3%20ceramics&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Venkidu,%20L.&rft.date=2022-11-01&rft.volume=33&rft.issue=33&rft.spage=25006&rft.epage=25024&rft.pages=25006-25024&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-022-09209-2&rft_dat=%3Cproquest_cross%3E2737807133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737807133&rft_id=info:pmid/&rfr_iscdi=true