3D shape optimization of loudspeaker cabinets for uniform directivity
This paper presents a method to perform gradient-based shape optimization to minimize the root mean square deviation of the exterior acoustic sound pressure level distribution in front of an initially spherically shaped loudspeaker. The work includes several examples of how different multi-frequency...
Gespeichert in:
Veröffentlicht in: | Structural and multidisciplinary optimization 2022-12, Vol.65 (12), Article 343 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Structural and multidisciplinary optimization |
container_volume | 65 |
creator | Andersen, Peter Risby Cutanda Henríquez, Vicente Aage, Niels Kook, Junghwan |
description | This paper presents a method to perform gradient-based shape optimization to minimize the root mean square deviation of the exterior acoustic sound pressure level distribution in front of an initially spherically shaped loudspeaker. The work includes several examples of how different multi-frequency optimization strategies can affect the final optimized design performance. This includes testing, averaging, and weighting of multi-frequency cost functions or using a minimax formulation. The shape optimization technique is based on an acoustic Boundary Element Method coupled to a Lumped Parameter loudspeaker model. To control and alter the deformation of the loudspeaker cabinet the optimization method adapts a spherical free-form deformation approach based on Bernstein polynomials. For the particular optimization problems presented, it is shown that improvements in the root mean square deviation of the sound pressure level in front of the loudspeaker can be achieved between 1 and 5 kHz. In the best-case scenario, less than a 1 dB sound pressure level (SPL) variation is observed between on-axis and a 70° off-axis response in the range 2 to 5 kHz. The widest frequency bandwidth and smoothest response of the root mean square deviation is found by utilizing the minimax formulation. |
doi_str_mv | 10.1007/s00158-022-03451-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737804336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737804336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8f778374f1b337aa757ba28568ee99d801c0641b066bf01b73758ebc99f40d9b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0zbJUdb1Axa8KHgLSZto1t2mJq2w_nqjFb15mjk87zvMg9AphXMKwC8SAK0EgaIgwMqKkmIPzWhNK0JLIfZ_d_50iI5SWgOAgFLO0JJd4fSie4tDP_it_9CDDx0ODm_C2Kbe6lcbcaON7-yQsAsRj53PY4tbH20z-Hc_7I7RgdObZE9-5hw9Xi8fFrdkdX9zt7hckYZRORDhOBeMl44axrjWvOJGF6KqhbVStgJoA3VJDdS1cUANZ7wS1jRSuhJaadgcnU29fQxvo02DWocxdvmkKjKcX2KszlQxUU0MKUXrVB_9VsedoqC-dKlJl8q61LcuVeQQm0Ipw92zjX_V_6Q-AYPabNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737804336</pqid></control><display><type>article</type><title>3D shape optimization of loudspeaker cabinets for uniform directivity</title><source>Springer Online Journals Complete</source><creator>Andersen, Peter Risby ; Cutanda Henríquez, Vicente ; Aage, Niels ; Kook, Junghwan</creator><creatorcontrib>Andersen, Peter Risby ; Cutanda Henríquez, Vicente ; Aage, Niels ; Kook, Junghwan</creatorcontrib><description>This paper presents a method to perform gradient-based shape optimization to minimize the root mean square deviation of the exterior acoustic sound pressure level distribution in front of an initially spherically shaped loudspeaker. The work includes several examples of how different multi-frequency optimization strategies can affect the final optimized design performance. This includes testing, averaging, and weighting of multi-frequency cost functions or using a minimax formulation. The shape optimization technique is based on an acoustic Boundary Element Method coupled to a Lumped Parameter loudspeaker model. To control and alter the deformation of the loudspeaker cabinet the optimization method adapts a spherical free-form deformation approach based on Bernstein polynomials. For the particular optimization problems presented, it is shown that improvements in the root mean square deviation of the sound pressure level in front of the loudspeaker can be achieved between 1 and 5 kHz. In the best-case scenario, less than a 1 dB sound pressure level (SPL) variation is observed between on-axis and a 70° off-axis response in the range 2 to 5 kHz. The widest frequency bandwidth and smoothest response of the root mean square deviation is found by utilizing the minimax formulation.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-022-03451-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary element method ; Cabinets ; Computational Mathematics and Numerical Analysis ; Cost function ; Deformation ; Design optimization ; Deviation ; Directivity ; Engineering ; Engineering Design ; Free form ; Loudspeakers ; Mean square values ; Minimax technique ; Optimization techniques ; Polynomials ; Research Paper ; Shape optimization ; Sound pressure ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2022-12, Vol.65 (12), Article 343</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8f778374f1b337aa757ba28568ee99d801c0641b066bf01b73758ebc99f40d9b3</citedby><cites>FETCH-LOGICAL-c319t-8f778374f1b337aa757ba28568ee99d801c0641b066bf01b73758ebc99f40d9b3</cites><orcidid>0000-0002-4342-1871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-022-03451-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-022-03451-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Andersen, Peter Risby</creatorcontrib><creatorcontrib>Cutanda Henríquez, Vicente</creatorcontrib><creatorcontrib>Aage, Niels</creatorcontrib><creatorcontrib>Kook, Junghwan</creatorcontrib><title>3D shape optimization of loudspeaker cabinets for uniform directivity</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This paper presents a method to perform gradient-based shape optimization to minimize the root mean square deviation of the exterior acoustic sound pressure level distribution in front of an initially spherically shaped loudspeaker. The work includes several examples of how different multi-frequency optimization strategies can affect the final optimized design performance. This includes testing, averaging, and weighting of multi-frequency cost functions or using a minimax formulation. The shape optimization technique is based on an acoustic Boundary Element Method coupled to a Lumped Parameter loudspeaker model. To control and alter the deformation of the loudspeaker cabinet the optimization method adapts a spherical free-form deformation approach based on Bernstein polynomials. For the particular optimization problems presented, it is shown that improvements in the root mean square deviation of the sound pressure level in front of the loudspeaker can be achieved between 1 and 5 kHz. In the best-case scenario, less than a 1 dB sound pressure level (SPL) variation is observed between on-axis and a 70° off-axis response in the range 2 to 5 kHz. The widest frequency bandwidth and smoothest response of the root mean square deviation is found by utilizing the minimax formulation.</description><subject>Boundary element method</subject><subject>Cabinets</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Cost function</subject><subject>Deformation</subject><subject>Design optimization</subject><subject>Deviation</subject><subject>Directivity</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Free form</subject><subject>Loudspeakers</subject><subject>Mean square values</subject><subject>Minimax technique</subject><subject>Optimization techniques</subject><subject>Polynomials</subject><subject>Research Paper</subject><subject>Shape optimization</subject><subject>Sound pressure</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0zbJUdb1Axa8KHgLSZto1t2mJq2w_nqjFb15mjk87zvMg9AphXMKwC8SAK0EgaIgwMqKkmIPzWhNK0JLIfZ_d_50iI5SWgOAgFLO0JJd4fSie4tDP_it_9CDDx0ODm_C2Kbe6lcbcaON7-yQsAsRj53PY4tbH20z-Hc_7I7RgdObZE9-5hw9Xi8fFrdkdX9zt7hckYZRORDhOBeMl44axrjWvOJGF6KqhbVStgJoA3VJDdS1cUANZ7wS1jRSuhJaadgcnU29fQxvo02DWocxdvmkKjKcX2KszlQxUU0MKUXrVB_9VsedoqC-dKlJl8q61LcuVeQQm0Ipw92zjX_V_6Q-AYPabNU</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Andersen, Peter Risby</creator><creator>Cutanda Henríquez, Vicente</creator><creator>Aage, Niels</creator><creator>Kook, Junghwan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4342-1871</orcidid></search><sort><creationdate>20221201</creationdate><title>3D shape optimization of loudspeaker cabinets for uniform directivity</title><author>Andersen, Peter Risby ; Cutanda Henríquez, Vicente ; Aage, Niels ; Kook, Junghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8f778374f1b337aa757ba28568ee99d801c0641b066bf01b73758ebc99f40d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary element method</topic><topic>Cabinets</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Cost function</topic><topic>Deformation</topic><topic>Design optimization</topic><topic>Deviation</topic><topic>Directivity</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Free form</topic><topic>Loudspeakers</topic><topic>Mean square values</topic><topic>Minimax technique</topic><topic>Optimization techniques</topic><topic>Polynomials</topic><topic>Research Paper</topic><topic>Shape optimization</topic><topic>Sound pressure</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andersen, Peter Risby</creatorcontrib><creatorcontrib>Cutanda Henríquez, Vicente</creatorcontrib><creatorcontrib>Aage, Niels</creatorcontrib><creatorcontrib>Kook, Junghwan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andersen, Peter Risby</au><au>Cutanda Henríquez, Vicente</au><au>Aage, Niels</au><au>Kook, Junghwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D shape optimization of loudspeaker cabinets for uniform directivity</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>65</volume><issue>12</issue><artnum>343</artnum><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This paper presents a method to perform gradient-based shape optimization to minimize the root mean square deviation of the exterior acoustic sound pressure level distribution in front of an initially spherically shaped loudspeaker. The work includes several examples of how different multi-frequency optimization strategies can affect the final optimized design performance. This includes testing, averaging, and weighting of multi-frequency cost functions or using a minimax formulation. The shape optimization technique is based on an acoustic Boundary Element Method coupled to a Lumped Parameter loudspeaker model. To control and alter the deformation of the loudspeaker cabinet the optimization method adapts a spherical free-form deformation approach based on Bernstein polynomials. For the particular optimization problems presented, it is shown that improvements in the root mean square deviation of the sound pressure level in front of the loudspeaker can be achieved between 1 and 5 kHz. In the best-case scenario, less than a 1 dB sound pressure level (SPL) variation is observed between on-axis and a 70° off-axis response in the range 2 to 5 kHz. The widest frequency bandwidth and smoothest response of the root mean square deviation is found by utilizing the minimax formulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-022-03451-2</doi><orcidid>https://orcid.org/0000-0002-4342-1871</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-147X |
ispartof | Structural and multidisciplinary optimization, 2022-12, Vol.65 (12), Article 343 |
issn | 1615-147X 1615-1488 |
language | eng |
recordid | cdi_proquest_journals_2737804336 |
source | Springer Online Journals Complete |
subjects | Boundary element method Cabinets Computational Mathematics and Numerical Analysis Cost function Deformation Design optimization Deviation Directivity Engineering Engineering Design Free form Loudspeakers Mean square values Minimax technique Optimization techniques Polynomials Research Paper Shape optimization Sound pressure Theoretical and Applied Mechanics |
title | 3D shape optimization of loudspeaker cabinets for uniform directivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20shape%20optimization%20of%20loudspeaker%20cabinets%20for%20uniform%20directivity&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Andersen,%20Peter%20Risby&rft.date=2022-12-01&rft.volume=65&rft.issue=12&rft.artnum=343&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-022-03451-2&rft_dat=%3Cproquest_cross%3E2737804336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737804336&rft_id=info:pmid/&rfr_iscdi=true |