3D shape optimization of loudspeaker cabinets for uniform directivity

This paper presents a method to perform gradient-based shape optimization to minimize the root mean square deviation of the exterior acoustic sound pressure level distribution in front of an initially spherically shaped loudspeaker. The work includes several examples of how different multi-frequency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2022-12, Vol.65 (12), Article 343
Hauptverfasser: Andersen, Peter Risby, Cutanda Henríquez, Vicente, Aage, Niels, Kook, Junghwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Structural and multidisciplinary optimization
container_volume 65
creator Andersen, Peter Risby
Cutanda Henríquez, Vicente
Aage, Niels
Kook, Junghwan
description This paper presents a method to perform gradient-based shape optimization to minimize the root mean square deviation of the exterior acoustic sound pressure level distribution in front of an initially spherically shaped loudspeaker. The work includes several examples of how different multi-frequency optimization strategies can affect the final optimized design performance. This includes testing, averaging, and weighting of multi-frequency cost functions or using a minimax formulation. The shape optimization technique is based on an acoustic Boundary Element Method coupled to a Lumped Parameter loudspeaker model. To control and alter the deformation of the loudspeaker cabinet the optimization method adapts a spherical free-form deformation approach based on Bernstein polynomials. For the particular optimization problems presented, it is shown that improvements in the root mean square deviation of the sound pressure level in front of the loudspeaker can be achieved between 1 and 5 kHz. In the best-case scenario, less than a 1 dB sound pressure level (SPL) variation is observed between on-axis and a 70° off-axis response in the range 2 to 5 kHz. The widest frequency bandwidth and smoothest response of the root mean square deviation is found by utilizing the minimax formulation.
doi_str_mv 10.1007/s00158-022-03451-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737804336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737804336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-8f778374f1b337aa757ba28568ee99d801c0641b066bf01b73758ebc99f40d9b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0zbJUdb1Axa8KHgLSZto1t2mJq2w_nqjFb15mjk87zvMg9AphXMKwC8SAK0EgaIgwMqKkmIPzWhNK0JLIfZ_d_50iI5SWgOAgFLO0JJd4fSie4tDP_it_9CDDx0ODm_C2Kbe6lcbcaON7-yQsAsRj53PY4tbH20z-Hc_7I7RgdObZE9-5hw9Xi8fFrdkdX9zt7hckYZRORDhOBeMl44axrjWvOJGF6KqhbVStgJoA3VJDdS1cUANZ7wS1jRSuhJaadgcnU29fQxvo02DWocxdvmkKjKcX2KszlQxUU0MKUXrVB_9VsedoqC-dKlJl8q61LcuVeQQm0Ipw92zjX_V_6Q-AYPabNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737804336</pqid></control><display><type>article</type><title>3D shape optimization of loudspeaker cabinets for uniform directivity</title><source>Springer Online Journals Complete</source><creator>Andersen, Peter Risby ; Cutanda Henríquez, Vicente ; Aage, Niels ; Kook, Junghwan</creator><creatorcontrib>Andersen, Peter Risby ; Cutanda Henríquez, Vicente ; Aage, Niels ; Kook, Junghwan</creatorcontrib><description>This paper presents a method to perform gradient-based shape optimization to minimize the root mean square deviation of the exterior acoustic sound pressure level distribution in front of an initially spherically shaped loudspeaker. The work includes several examples of how different multi-frequency optimization strategies can affect the final optimized design performance. This includes testing, averaging, and weighting of multi-frequency cost functions or using a minimax formulation. The shape optimization technique is based on an acoustic Boundary Element Method coupled to a Lumped Parameter loudspeaker model. To control and alter the deformation of the loudspeaker cabinet the optimization method adapts a spherical free-form deformation approach based on Bernstein polynomials. For the particular optimization problems presented, it is shown that improvements in the root mean square deviation of the sound pressure level in front of the loudspeaker can be achieved between 1 and 5 kHz. In the best-case scenario, less than a 1 dB sound pressure level (SPL) variation is observed between on-axis and a 70° off-axis response in the range 2 to 5 kHz. The widest frequency bandwidth and smoothest response of the root mean square deviation is found by utilizing the minimax formulation.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-022-03451-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary element method ; Cabinets ; Computational Mathematics and Numerical Analysis ; Cost function ; Deformation ; Design optimization ; Deviation ; Directivity ; Engineering ; Engineering Design ; Free form ; Loudspeakers ; Mean square values ; Minimax technique ; Optimization techniques ; Polynomials ; Research Paper ; Shape optimization ; Sound pressure ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2022-12, Vol.65 (12), Article 343</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-8f778374f1b337aa757ba28568ee99d801c0641b066bf01b73758ebc99f40d9b3</citedby><cites>FETCH-LOGICAL-c319t-8f778374f1b337aa757ba28568ee99d801c0641b066bf01b73758ebc99f40d9b3</cites><orcidid>0000-0002-4342-1871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-022-03451-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-022-03451-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Andersen, Peter Risby</creatorcontrib><creatorcontrib>Cutanda Henríquez, Vicente</creatorcontrib><creatorcontrib>Aage, Niels</creatorcontrib><creatorcontrib>Kook, Junghwan</creatorcontrib><title>3D shape optimization of loudspeaker cabinets for uniform directivity</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>This paper presents a method to perform gradient-based shape optimization to minimize the root mean square deviation of the exterior acoustic sound pressure level distribution in front of an initially spherically shaped loudspeaker. The work includes several examples of how different multi-frequency optimization strategies can affect the final optimized design performance. This includes testing, averaging, and weighting of multi-frequency cost functions or using a minimax formulation. The shape optimization technique is based on an acoustic Boundary Element Method coupled to a Lumped Parameter loudspeaker model. To control and alter the deformation of the loudspeaker cabinet the optimization method adapts a spherical free-form deformation approach based on Bernstein polynomials. For the particular optimization problems presented, it is shown that improvements in the root mean square deviation of the sound pressure level in front of the loudspeaker can be achieved between 1 and 5 kHz. In the best-case scenario, less than a 1 dB sound pressure level (SPL) variation is observed between on-axis and a 70° off-axis response in the range 2 to 5 kHz. The widest frequency bandwidth and smoothest response of the root mean square deviation is found by utilizing the minimax formulation.</description><subject>Boundary element method</subject><subject>Cabinets</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Cost function</subject><subject>Deformation</subject><subject>Design optimization</subject><subject>Deviation</subject><subject>Directivity</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Free form</subject><subject>Loudspeakers</subject><subject>Mean square values</subject><subject>Minimax technique</subject><subject>Optimization techniques</subject><subject>Polynomials</subject><subject>Research Paper</subject><subject>Shape optimization</subject><subject>Sound pressure</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0zbJUdb1Axa8KHgLSZto1t2mJq2w_nqjFb15mjk87zvMg9AphXMKwC8SAK0EgaIgwMqKkmIPzWhNK0JLIfZ_d_50iI5SWgOAgFLO0JJd4fSie4tDP_it_9CDDx0ODm_C2Kbe6lcbcaON7-yQsAsRj53PY4tbH20z-Hc_7I7RgdObZE9-5hw9Xi8fFrdkdX9zt7hckYZRORDhOBeMl44axrjWvOJGF6KqhbVStgJoA3VJDdS1cUANZ7wS1jRSuhJaadgcnU29fQxvo02DWocxdvmkKjKcX2KszlQxUU0MKUXrVB_9VsedoqC-dKlJl8q61LcuVeQQm0Ipw92zjX_V_6Q-AYPabNU</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Andersen, Peter Risby</creator><creator>Cutanda Henríquez, Vicente</creator><creator>Aage, Niels</creator><creator>Kook, Junghwan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4342-1871</orcidid></search><sort><creationdate>20221201</creationdate><title>3D shape optimization of loudspeaker cabinets for uniform directivity</title><author>Andersen, Peter Risby ; Cutanda Henríquez, Vicente ; Aage, Niels ; Kook, Junghwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-8f778374f1b337aa757ba28568ee99d801c0641b066bf01b73758ebc99f40d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary element method</topic><topic>Cabinets</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Cost function</topic><topic>Deformation</topic><topic>Design optimization</topic><topic>Deviation</topic><topic>Directivity</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Free form</topic><topic>Loudspeakers</topic><topic>Mean square values</topic><topic>Minimax technique</topic><topic>Optimization techniques</topic><topic>Polynomials</topic><topic>Research Paper</topic><topic>Shape optimization</topic><topic>Sound pressure</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andersen, Peter Risby</creatorcontrib><creatorcontrib>Cutanda Henríquez, Vicente</creatorcontrib><creatorcontrib>Aage, Niels</creatorcontrib><creatorcontrib>Kook, Junghwan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andersen, Peter Risby</au><au>Cutanda Henríquez, Vicente</au><au>Aage, Niels</au><au>Kook, Junghwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D shape optimization of loudspeaker cabinets for uniform directivity</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>65</volume><issue>12</issue><artnum>343</artnum><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>This paper presents a method to perform gradient-based shape optimization to minimize the root mean square deviation of the exterior acoustic sound pressure level distribution in front of an initially spherically shaped loudspeaker. The work includes several examples of how different multi-frequency optimization strategies can affect the final optimized design performance. This includes testing, averaging, and weighting of multi-frequency cost functions or using a minimax formulation. The shape optimization technique is based on an acoustic Boundary Element Method coupled to a Lumped Parameter loudspeaker model. To control and alter the deformation of the loudspeaker cabinet the optimization method adapts a spherical free-form deformation approach based on Bernstein polynomials. For the particular optimization problems presented, it is shown that improvements in the root mean square deviation of the sound pressure level in front of the loudspeaker can be achieved between 1 and 5 kHz. In the best-case scenario, less than a 1 dB sound pressure level (SPL) variation is observed between on-axis and a 70° off-axis response in the range 2 to 5 kHz. The widest frequency bandwidth and smoothest response of the root mean square deviation is found by utilizing the minimax formulation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-022-03451-2</doi><orcidid>https://orcid.org/0000-0002-4342-1871</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2022-12, Vol.65 (12), Article 343
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2737804336
source Springer Online Journals Complete
subjects Boundary element method
Cabinets
Computational Mathematics and Numerical Analysis
Cost function
Deformation
Design optimization
Deviation
Directivity
Engineering
Engineering Design
Free form
Loudspeakers
Mean square values
Minimax technique
Optimization techniques
Polynomials
Research Paper
Shape optimization
Sound pressure
Theoretical and Applied Mechanics
title 3D shape optimization of loudspeaker cabinets for uniform directivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20shape%20optimization%20of%20loudspeaker%20cabinets%20for%20uniform%20directivity&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Andersen,%20Peter%20Risby&rft.date=2022-12-01&rft.volume=65&rft.issue=12&rft.artnum=343&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-022-03451-2&rft_dat=%3Cproquest_cross%3E2737804336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737804336&rft_id=info:pmid/&rfr_iscdi=true