ENERO: Efficient real-time WAN routing optimization with Deep Reinforcement Learning
Wide Area Networks (WAN) are a key infrastructure in today’s society. During the last years, WANs have seen a considerable increase in network’s traffic and network applications, imposing new requirements on existing network technologies (e.g., low latency and high throughput). Consequently, Interne...
Gespeichert in:
Veröffentlicht in: | Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2022-09, Vol.214, p.109166, Article 109166 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 109166 |
container_title | Computer networks (Amsterdam, Netherlands : 1999) |
container_volume | 214 |
creator | Almasan, Paul Xiao, Shihan Cheng, Xiangle Shi, Xiang Barlet-Ros, Pere Cabellos-Aparicio, Albert |
description | Wide Area Networks (WAN) are a key infrastructure in today’s society. During the last years, WANs have seen a considerable increase in network’s traffic and network applications, imposing new requirements on existing network technologies (e.g., low latency and high throughput). Consequently, Internet Service Providers (ISP) are under pressure to ensure the customer’s Quality of Service and fulfill Service Level Agreements. Network operators leverage Traffic Engineering (TE) techniques to efficiently manage the network’s resources. However, WAN’s traffic can drastically change during time and the connectivity can be affected due to external factors (e.g., link failures). Therefore, TE solutions must be able to adapt to dynamic scenarios in real-time.
In this paper we propose Enero, an efficient real-time TE solution based on a two-stage optimization process. In the first one, Enero leverages Deep Reinforcement Learning (DRL) to optimize the routing configuration by generating a long-term TE strategy. To enable efficient operation over dynamic network scenarios (e.g., when link failures occur), we integrated a Graph Neural Network into the DRL agent. In the second stage, Enero uses a Local Search algorithm to improve DRL’s solution without adding computational overhead to the optimization process. The experimental results indicate that Enero is able to operate in real-world dynamic network topologies in 4.5 s on average for topologies up to 100 links. |
doi_str_mv | 10.1016/j.comnet.2022.109166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737745536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128622002717</els_id><sourcerecordid>2737745536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-c882fd91d28ea8e95c7d3cf41e4776aceeada4b780922a2385be1eac86c0b1633</originalsourceid><addsrcrecordid>eNp9kN1LwzAUxYsoOKf_gQ8Bnzvz0SapD8LQ-gFjgzHxMWTpraaszUwzRf96U-qzT_dyOOdc7i9JLgmeEUz4dTMzru0gzCimNEoF4fwomRApaCowL47jzmSREir5aXLW9w3GOMuonCSbclmuVzeorGtrLHQBedC7NNgW0Ot8ibw7BNu9IbePkv3RwboOfdnwju4B9mgNtqudN9AO0QVo30X3eXJS610PF39zmrw8lJu7p3Sxeny-my9SwyQOqZGS1lVBKipBSyhyIypm6oxAJgTXBkBXOtsKiQtKNWUy3wIBbSQ3eEs4Y9Pkauzde_dxgD6oxh18F08qKpgQWZ4zHl3Z6DLe9b2HWu29bbX_VgSrgZ9q1MhPDfzUyC_GbscYxA8-LXjVD4AMVNaDCapy9v-CXwPJeww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737745536</pqid></control><display><type>article</type><title>ENERO: Efficient real-time WAN routing optimization with Deep Reinforcement Learning</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Almasan, Paul ; Xiao, Shihan ; Cheng, Xiangle ; Shi, Xiang ; Barlet-Ros, Pere ; Cabellos-Aparicio, Albert</creator><creatorcontrib>Almasan, Paul ; Xiao, Shihan ; Cheng, Xiangle ; Shi, Xiang ; Barlet-Ros, Pere ; Cabellos-Aparicio, Albert</creatorcontrib><description>Wide Area Networks (WAN) are a key infrastructure in today’s society. During the last years, WANs have seen a considerable increase in network’s traffic and network applications, imposing new requirements on existing network technologies (e.g., low latency and high throughput). Consequently, Internet Service Providers (ISP) are under pressure to ensure the customer’s Quality of Service and fulfill Service Level Agreements. Network operators leverage Traffic Engineering (TE) techniques to efficiently manage the network’s resources. However, WAN’s traffic can drastically change during time and the connectivity can be affected due to external factors (e.g., link failures). Therefore, TE solutions must be able to adapt to dynamic scenarios in real-time.
In this paper we propose Enero, an efficient real-time TE solution based on a two-stage optimization process. In the first one, Enero leverages Deep Reinforcement Learning (DRL) to optimize the routing configuration by generating a long-term TE strategy. To enable efficient operation over dynamic network scenarios (e.g., when link failures occur), we integrated a Graph Neural Network into the DRL agent. In the second stage, Enero uses a Local Search algorithm to improve DRL’s solution without adding computational overhead to the optimization process. The experimental results indicate that Enero is able to operate in real-world dynamic network topologies in 4.5 s on average for topologies up to 100 links.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2022.109166</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Customer services ; Deep learning ; Deep Reinforcement Learning ; Graph Neural Networks ; Internet service providers ; Machine learning ; Network latency ; Network topologies ; Optimization ; Quality of service architectures ; Real time ; Routing ; Routing (telecommunications) ; Search algorithms ; Traffic control ; Traffic engineering ; Wide area networks</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2022-09, Vol.214, p.109166, Article 109166</ispartof><rights>2022 The Author(s)</rights><rights>Copyright Elsevier Sequoia S.A. Sep 4, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-c882fd91d28ea8e95c7d3cf41e4776aceeada4b780922a2385be1eac86c0b1633</citedby><cites>FETCH-LOGICAL-c380t-c882fd91d28ea8e95c7d3cf41e4776aceeada4b780922a2385be1eac86c0b1633</cites><orcidid>0000-0003-3903-6759 ; 0000-0001-6179-4332</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.comnet.2022.109166$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Almasan, Paul</creatorcontrib><creatorcontrib>Xiao, Shihan</creatorcontrib><creatorcontrib>Cheng, Xiangle</creatorcontrib><creatorcontrib>Shi, Xiang</creatorcontrib><creatorcontrib>Barlet-Ros, Pere</creatorcontrib><creatorcontrib>Cabellos-Aparicio, Albert</creatorcontrib><title>ENERO: Efficient real-time WAN routing optimization with Deep Reinforcement Learning</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>Wide Area Networks (WAN) are a key infrastructure in today’s society. During the last years, WANs have seen a considerable increase in network’s traffic and network applications, imposing new requirements on existing network technologies (e.g., low latency and high throughput). Consequently, Internet Service Providers (ISP) are under pressure to ensure the customer’s Quality of Service and fulfill Service Level Agreements. Network operators leverage Traffic Engineering (TE) techniques to efficiently manage the network’s resources. However, WAN’s traffic can drastically change during time and the connectivity can be affected due to external factors (e.g., link failures). Therefore, TE solutions must be able to adapt to dynamic scenarios in real-time.
In this paper we propose Enero, an efficient real-time TE solution based on a two-stage optimization process. In the first one, Enero leverages Deep Reinforcement Learning (DRL) to optimize the routing configuration by generating a long-term TE strategy. To enable efficient operation over dynamic network scenarios (e.g., when link failures occur), we integrated a Graph Neural Network into the DRL agent. In the second stage, Enero uses a Local Search algorithm to improve DRL’s solution without adding computational overhead to the optimization process. The experimental results indicate that Enero is able to operate in real-world dynamic network topologies in 4.5 s on average for topologies up to 100 links.</description><subject>Customer services</subject><subject>Deep learning</subject><subject>Deep Reinforcement Learning</subject><subject>Graph Neural Networks</subject><subject>Internet service providers</subject><subject>Machine learning</subject><subject>Network latency</subject><subject>Network topologies</subject><subject>Optimization</subject><subject>Quality of service architectures</subject><subject>Real time</subject><subject>Routing</subject><subject>Routing (telecommunications)</subject><subject>Search algorithms</subject><subject>Traffic control</subject><subject>Traffic engineering</subject><subject>Wide area networks</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kN1LwzAUxYsoOKf_gQ8Bnzvz0SapD8LQ-gFjgzHxMWTpraaszUwzRf96U-qzT_dyOOdc7i9JLgmeEUz4dTMzru0gzCimNEoF4fwomRApaCowL47jzmSREir5aXLW9w3GOMuonCSbclmuVzeorGtrLHQBedC7NNgW0Ot8ibw7BNu9IbePkv3RwboOfdnwju4B9mgNtqudN9AO0QVo30X3eXJS610PF39zmrw8lJu7p3Sxeny-my9SwyQOqZGS1lVBKipBSyhyIypm6oxAJgTXBkBXOtsKiQtKNWUy3wIBbSQ3eEs4Y9Pkauzde_dxgD6oxh18F08qKpgQWZ4zHl3Z6DLe9b2HWu29bbX_VgSrgZ9q1MhPDfzUyC_GbscYxA8-LXjVD4AMVNaDCapy9v-CXwPJeww</recordid><startdate>20220904</startdate><enddate>20220904</enddate><creator>Almasan, Paul</creator><creator>Xiao, Shihan</creator><creator>Cheng, Xiangle</creator><creator>Shi, Xiang</creator><creator>Barlet-Ros, Pere</creator><creator>Cabellos-Aparicio, Albert</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3903-6759</orcidid><orcidid>https://orcid.org/0000-0001-6179-4332</orcidid></search><sort><creationdate>20220904</creationdate><title>ENERO: Efficient real-time WAN routing optimization with Deep Reinforcement Learning</title><author>Almasan, Paul ; Xiao, Shihan ; Cheng, Xiangle ; Shi, Xiang ; Barlet-Ros, Pere ; Cabellos-Aparicio, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-c882fd91d28ea8e95c7d3cf41e4776aceeada4b780922a2385be1eac86c0b1633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Customer services</topic><topic>Deep learning</topic><topic>Deep Reinforcement Learning</topic><topic>Graph Neural Networks</topic><topic>Internet service providers</topic><topic>Machine learning</topic><topic>Network latency</topic><topic>Network topologies</topic><topic>Optimization</topic><topic>Quality of service architectures</topic><topic>Real time</topic><topic>Routing</topic><topic>Routing (telecommunications)</topic><topic>Search algorithms</topic><topic>Traffic control</topic><topic>Traffic engineering</topic><topic>Wide area networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almasan, Paul</creatorcontrib><creatorcontrib>Xiao, Shihan</creatorcontrib><creatorcontrib>Cheng, Xiangle</creatorcontrib><creatorcontrib>Shi, Xiang</creatorcontrib><creatorcontrib>Barlet-Ros, Pere</creatorcontrib><creatorcontrib>Cabellos-Aparicio, Albert</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almasan, Paul</au><au>Xiao, Shihan</au><au>Cheng, Xiangle</au><au>Shi, Xiang</au><au>Barlet-Ros, Pere</au><au>Cabellos-Aparicio, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ENERO: Efficient real-time WAN routing optimization with Deep Reinforcement Learning</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2022-09-04</date><risdate>2022</risdate><volume>214</volume><spage>109166</spage><pages>109166-</pages><artnum>109166</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>Wide Area Networks (WAN) are a key infrastructure in today’s society. During the last years, WANs have seen a considerable increase in network’s traffic and network applications, imposing new requirements on existing network technologies (e.g., low latency and high throughput). Consequently, Internet Service Providers (ISP) are under pressure to ensure the customer’s Quality of Service and fulfill Service Level Agreements. Network operators leverage Traffic Engineering (TE) techniques to efficiently manage the network’s resources. However, WAN’s traffic can drastically change during time and the connectivity can be affected due to external factors (e.g., link failures). Therefore, TE solutions must be able to adapt to dynamic scenarios in real-time.
In this paper we propose Enero, an efficient real-time TE solution based on a two-stage optimization process. In the first one, Enero leverages Deep Reinforcement Learning (DRL) to optimize the routing configuration by generating a long-term TE strategy. To enable efficient operation over dynamic network scenarios (e.g., when link failures occur), we integrated a Graph Neural Network into the DRL agent. In the second stage, Enero uses a Local Search algorithm to improve DRL’s solution without adding computational overhead to the optimization process. The experimental results indicate that Enero is able to operate in real-world dynamic network topologies in 4.5 s on average for topologies up to 100 links.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2022.109166</doi><orcidid>https://orcid.org/0000-0003-3903-6759</orcidid><orcidid>https://orcid.org/0000-0001-6179-4332</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-1286 |
ispartof | Computer networks (Amsterdam, Netherlands : 1999), 2022-09, Vol.214, p.109166, Article 109166 |
issn | 1389-1286 1872-7069 |
language | eng |
recordid | cdi_proquest_journals_2737745536 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Customer services Deep learning Deep Reinforcement Learning Graph Neural Networks Internet service providers Machine learning Network latency Network topologies Optimization Quality of service architectures Real time Routing Routing (telecommunications) Search algorithms Traffic control Traffic engineering Wide area networks |
title | ENERO: Efficient real-time WAN routing optimization with Deep Reinforcement Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ENERO:%20Efficient%20real-time%20WAN%20routing%20optimization%20with%20Deep%20Reinforcement%20Learning&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Almasan,%20Paul&rft.date=2022-09-04&rft.volume=214&rft.spage=109166&rft.pages=109166-&rft.artnum=109166&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2022.109166&rft_dat=%3Cproquest_cross%3E2737745536%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737745536&rft_id=info:pmid/&rft_els_id=S1389128622002717&rfr_iscdi=true |