Rational homotopy types of mapping spaces via cohomology algebras

Let X be a connected finite CW-complex and Y be a connected rational space with minimal Sullivan model of the form ( Λ ( P ⊕ Q ) , d P = 0 , d Q ⊂ Λ P ) , where P and Q are graded spaces of finite type. In this paper, it is shown that the rational homotopy type of map ( X , Y ) is determined by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2022-12, Vol.119 (6), p.639-648
Hauptverfasser: Xie, Sang, Liu, Jian, Xiao, Jianming, Liu, Xiugui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a connected finite CW-complex and Y be a connected rational space with minimal Sullivan model of the form ( Λ ( P ⊕ Q ) , d P = 0 , d Q ⊂ Λ P ) , where P and Q are graded spaces of finite type. In this paper, it is shown that the rational homotopy type of map ( X , Y ) is determined by the cohomology algebra H ∗ ( X ; Q ) and the rational homotopy type of Y .
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-022-01784-4