Rational homotopy types of mapping spaces via cohomology algebras
Let X be a connected finite CW-complex and Y be a connected rational space with minimal Sullivan model of the form ( Λ ( P ⊕ Q ) , d P = 0 , d Q ⊂ Λ P ) , where P and Q are graded spaces of finite type. In this paper, it is shown that the rational homotopy type of map ( X , Y ) is determined by the...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2022-12, Vol.119 (6), p.639-648 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a connected finite CW-complex and
Y
be a connected rational space with minimal Sullivan model of the form
(
Λ
(
P
⊕
Q
)
,
d
P
=
0
,
d
Q
⊂
Λ
P
)
,
where
P
and
Q
are graded spaces of finite type. In this paper, it is shown that the rational homotopy type of
map
(
X
,
Y
)
is determined by the cohomology algebra
H
∗
(
X
;
Q
)
and the rational homotopy type of
Y
. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-022-01784-4 |