Well-posedness and numerical schemes for one-dimensional McKean–Vlasov equations and interacting particle systems with discontinuous drift

In this paper, we first establish well-posedness results for one-dimensional McKean–Vlasov stochastic differential equations (SDEs) and related particle systems with a measure-dependent drift coefficient that is discontinuous in the spatial component, and a diffusion coefficient which is a Lipschitz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT 2022-12, Vol.62 (4), p.1505-1549
Hauptverfasser: Leobacher, Gunther, Reisinger, Christoph, Stockinger, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1549
container_issue 4
container_start_page 1505
container_title BIT
container_volume 62
creator Leobacher, Gunther
Reisinger, Christoph
Stockinger, Wolfgang
description In this paper, we first establish well-posedness results for one-dimensional McKean–Vlasov stochastic differential equations (SDEs) and related particle systems with a measure-dependent drift coefficient that is discontinuous in the spatial component, and a diffusion coefficient which is a Lipschitz function of the state only. We only require a fairly mild condition on the diffusion coefficient, namely to be non-zero in a point of discontinuity of the drift, while we need to impose certain structural assumptions on the measure-dependence of the drift. Second, we study Euler–Maruyama type schemes for the particle system to approximate the solution of the one-dimensional McKean–Vlasov SDE. Here, we will prove strong convergence results in terms of the number of time-steps and number of particles. Due to the discontinuity of the drift, the convergence analysis is non-standard and the usual strong convergence order 1/2 known for the Lipschitz case cannot be recovered for all presented schemes.
doi_str_mv 10.1007/s10543-022-00920-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737735900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737735900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-208f283368c0cd1727ebde8aee8a85fe340ece5cbeb3f1f57223f19c0e830f013</originalsourceid><addsrcrecordid>eNp9kLtuFDEUhi0UJDYLL0BlKbXh2N7ZmSlRBCRKIhoupeX1HG8czdgbHw8oHQ9AxxvyJHGYSOlSHP3Ff5HOx9hbCe8kQPueJDQbLUApAdArEJsXbCWbVolequaIrQBgK3Snm1fsmOgGQPVbqVfszw8cR3FIhENEIm7jwOM8YQ7OjpzcNU5I3KfMU0QxhAkjhRSrd-Uu0MZ_v_9-Hy2lnxxvZ1uqtWyEWDBbV0Lc84PNJbgROd1RwYn4r1Cu-RDIpVgDc5qJDzn48pq99HYkfPOoa_bt08evp2fi8svn89MPl8KpXhehoPOq03rbOXCDbFWLuwE7i_W6xqPeADps3A532ktfKaiqvQPsNHiQes1Olt1DTrczUjE3ac71KTKq1W2rmx6gptSScjkRZfTmkMNk852RYB6om4W6qdTNf-pmU0t6KVENxz3mp-lnWvebhoog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737735900</pqid></control><display><type>article</type><title>Well-posedness and numerical schemes for one-dimensional McKean–Vlasov equations and interacting particle systems with discontinuous drift</title><source>SpringerLink Journals - AutoHoldings</source><creator>Leobacher, Gunther ; Reisinger, Christoph ; Stockinger, Wolfgang</creator><creatorcontrib>Leobacher, Gunther ; Reisinger, Christoph ; Stockinger, Wolfgang</creatorcontrib><description>In this paper, we first establish well-posedness results for one-dimensional McKean–Vlasov stochastic differential equations (SDEs) and related particle systems with a measure-dependent drift coefficient that is discontinuous in the spatial component, and a diffusion coefficient which is a Lipschitz function of the state only. We only require a fairly mild condition on the diffusion coefficient, namely to be non-zero in a point of discontinuity of the drift, while we need to impose certain structural assumptions on the measure-dependence of the drift. Second, we study Euler–Maruyama type schemes for the particle system to approximate the solution of the one-dimensional McKean–Vlasov SDE. Here, we will prove strong convergence results in terms of the number of time-steps and number of particles. Due to the discontinuity of the drift, the convergence analysis is non-standard and the usual strong convergence order 1/2 known for the Lipschitz case cannot be recovered for all presented schemes.</description><identifier>ISSN: 0006-3835</identifier><identifier>EISSN: 1572-9125</identifier><identifier>DOI: 10.1007/s10543-022-00920-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Computational Mathematics and Numerical Analysis ; Convergence ; Differential equations ; Diffusion coefficient ; Discontinuity ; Drift ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numeric Computing ; Vlasov equations ; Well posed problems</subject><ispartof>BIT, 2022-12, Vol.62 (4), p.1505-1549</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-208f283368c0cd1727ebde8aee8a85fe340ece5cbeb3f1f57223f19c0e830f013</citedby><cites>FETCH-LOGICAL-c293t-208f283368c0cd1727ebde8aee8a85fe340ece5cbeb3f1f57223f19c0e830f013</cites><orcidid>0000-0002-5305-7786</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10543-022-00920-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10543-022-00920-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Leobacher, Gunther</creatorcontrib><creatorcontrib>Reisinger, Christoph</creatorcontrib><creatorcontrib>Stockinger, Wolfgang</creatorcontrib><title>Well-posedness and numerical schemes for one-dimensional McKean–Vlasov equations and interacting particle systems with discontinuous drift</title><title>BIT</title><addtitle>Bit Numer Math</addtitle><description>In this paper, we first establish well-posedness results for one-dimensional McKean–Vlasov stochastic differential equations (SDEs) and related particle systems with a measure-dependent drift coefficient that is discontinuous in the spatial component, and a diffusion coefficient which is a Lipschitz function of the state only. We only require a fairly mild condition on the diffusion coefficient, namely to be non-zero in a point of discontinuity of the drift, while we need to impose certain structural assumptions on the measure-dependence of the drift. Second, we study Euler–Maruyama type schemes for the particle system to approximate the solution of the one-dimensional McKean–Vlasov SDE. Here, we will prove strong convergence results in terms of the number of time-steps and number of particles. Due to the discontinuity of the drift, the convergence analysis is non-standard and the usual strong convergence order 1/2 known for the Lipschitz case cannot be recovered for all presented schemes.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Differential equations</subject><subject>Diffusion coefficient</subject><subject>Discontinuity</subject><subject>Drift</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numeric Computing</subject><subject>Vlasov equations</subject><subject>Well posed problems</subject><issn>0006-3835</issn><issn>1572-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kLtuFDEUhi0UJDYLL0BlKbXh2N7ZmSlRBCRKIhoupeX1HG8czdgbHw8oHQ9AxxvyJHGYSOlSHP3Ff5HOx9hbCe8kQPueJDQbLUApAdArEJsXbCWbVolequaIrQBgK3Snm1fsmOgGQPVbqVfszw8cR3FIhENEIm7jwOM8YQ7OjpzcNU5I3KfMU0QxhAkjhRSrd-Uu0MZ_v_9-Hy2lnxxvZ1uqtWyEWDBbV0Lc84PNJbgROd1RwYn4r1Cu-RDIpVgDc5qJDzn48pq99HYkfPOoa_bt08evp2fi8svn89MPl8KpXhehoPOq03rbOXCDbFWLuwE7i_W6xqPeADps3A532ktfKaiqvQPsNHiQes1Olt1DTrczUjE3ac71KTKq1W2rmx6gptSScjkRZfTmkMNk852RYB6om4W6qdTNf-pmU0t6KVENxz3mp-lnWvebhoog</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Leobacher, Gunther</creator><creator>Reisinger, Christoph</creator><creator>Stockinger, Wolfgang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5305-7786</orcidid></search><sort><creationdate>20221201</creationdate><title>Well-posedness and numerical schemes for one-dimensional McKean–Vlasov equations and interacting particle systems with discontinuous drift</title><author>Leobacher, Gunther ; Reisinger, Christoph ; Stockinger, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-208f283368c0cd1727ebde8aee8a85fe340ece5cbeb3f1f57223f19c0e830f013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Differential equations</topic><topic>Diffusion coefficient</topic><topic>Discontinuity</topic><topic>Drift</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numeric Computing</topic><topic>Vlasov equations</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leobacher, Gunther</creatorcontrib><creatorcontrib>Reisinger, Christoph</creatorcontrib><creatorcontrib>Stockinger, Wolfgang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>BIT</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leobacher, Gunther</au><au>Reisinger, Christoph</au><au>Stockinger, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Well-posedness and numerical schemes for one-dimensional McKean–Vlasov equations and interacting particle systems with discontinuous drift</atitle><jtitle>BIT</jtitle><stitle>Bit Numer Math</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>62</volume><issue>4</issue><spage>1505</spage><epage>1549</epage><pages>1505-1549</pages><issn>0006-3835</issn><eissn>1572-9125</eissn><abstract>In this paper, we first establish well-posedness results for one-dimensional McKean–Vlasov stochastic differential equations (SDEs) and related particle systems with a measure-dependent drift coefficient that is discontinuous in the spatial component, and a diffusion coefficient which is a Lipschitz function of the state only. We only require a fairly mild condition on the diffusion coefficient, namely to be non-zero in a point of discontinuity of the drift, while we need to impose certain structural assumptions on the measure-dependence of the drift. Second, we study Euler–Maruyama type schemes for the particle system to approximate the solution of the one-dimensional McKean–Vlasov SDE. Here, we will prove strong convergence results in terms of the number of time-steps and number of particles. Due to the discontinuity of the drift, the convergence analysis is non-standard and the usual strong convergence order 1/2 known for the Lipschitz case cannot be recovered for all presented schemes.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10543-022-00920-4</doi><tpages>45</tpages><orcidid>https://orcid.org/0000-0002-5305-7786</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3835
ispartof BIT, 2022-12, Vol.62 (4), p.1505-1549
issn 0006-3835
1572-9125
language eng
recordid cdi_proquest_journals_2737735900
source SpringerLink Journals - AutoHoldings
subjects Computational Mathematics and Numerical Analysis
Convergence
Differential equations
Diffusion coefficient
Discontinuity
Drift
Mathematical analysis
Mathematics
Mathematics and Statistics
Numeric Computing
Vlasov equations
Well posed problems
title Well-posedness and numerical schemes for one-dimensional McKean–Vlasov equations and interacting particle systems with discontinuous drift
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A20%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Well-posedness%20and%20numerical%20schemes%20for%20one-dimensional%20McKean%E2%80%93Vlasov%20equations%20and%20interacting%20particle%20systems%20with%20discontinuous%20drift&rft.jtitle=BIT&rft.au=Leobacher,%20Gunther&rft.date=2022-12-01&rft.volume=62&rft.issue=4&rft.spage=1505&rft.epage=1549&rft.pages=1505-1549&rft.issn=0006-3835&rft.eissn=1572-9125&rft_id=info:doi/10.1007/s10543-022-00920-4&rft_dat=%3Cproquest_cross%3E2737735900%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737735900&rft_id=info:pmid/&rfr_iscdi=true