Elliptic and Parabolic Boundary Value Problems in Weighted Function Spaces

In this paper we study elliptic and parabolic boundary value problems with inhomogeneous boundary conditions in weighted function spaces of Sobolev, Bessel potential, Besov and Triebel-Lizorkin type. As one of the main results, we solve the problem of weighted L q -maximal regularity in weighted Bes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Potential analysis 2022-12, Vol.57 (4), p.601-669
Hauptverfasser: Hummel, Felix, Lindemulder, Nick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 4
container_start_page 601
container_title Potential analysis
container_volume 57
creator Hummel, Felix
Lindemulder, Nick
description In this paper we study elliptic and parabolic boundary value problems with inhomogeneous boundary conditions in weighted function spaces of Sobolev, Bessel potential, Besov and Triebel-Lizorkin type. As one of the main results, we solve the problem of weighted L q -maximal regularity in weighted Besov and Triebel-Lizorkin spaces for the parabolic case, where the spatial weight is a power weight in the Muckenhoupt A ∞ -class. In the Besov space case we have the restriction that the microscopic parameter equals to q . Going beyond the A p -range, where p is the integrability parameter of the Besov or Triebel-Lizorkin space under consideration, yields extra flexibility in the sharp regularity of the boundary inhomogeneities. This extra flexibility allows us to treat rougher boundary data and provides a quantitative smoothing effect on the interior of the domain. The main ingredient is an analysis of anisotropic Poisson operators.
doi_str_mv 10.1007/s11118-021-09929-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737735587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737735587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f12ee678066928df4d705db496d8c6107204d7421d2362efc4935bf5149f9b5d3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0iTNUZfdVVlwwb-30Dbp2qXb1qRl8dsbreDNuQwzvPeG-SF0TuGSAqirQGOlBBgloDXTZH-AJlQoRuLwdogmoJkkTAI9RichbAGAKZVO0P28rquurwqcNRavM5_lbR2nm3ZobOY_8UtWDw6vfZvXbhdw1eBXV23ee2fxYmiKvmob_NhlhQun6KjM6uDOfvsUPS_mT7NbsnpY3s2uV6TgkvekpMw5qVKQUrPUlolVIGyeaGnTQlJQDOIqYdQyLpkri0RzkZeCJrrUubB8ii7G3M63H4MLvdm2g2_iScMUV4oLkaqoYqOq8G0I3pWm89UufmQomG9mZmRmIjPzw8zso4mPphDFzcb5v-h_XF-Sj26Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737735587</pqid></control><display><type>article</type><title>Elliptic and Parabolic Boundary Value Problems in Weighted Function Spaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hummel, Felix ; Lindemulder, Nick</creator><creatorcontrib>Hummel, Felix ; Lindemulder, Nick</creatorcontrib><description>In this paper we study elliptic and parabolic boundary value problems with inhomogeneous boundary conditions in weighted function spaces of Sobolev, Bessel potential, Besov and Triebel-Lizorkin type. As one of the main results, we solve the problem of weighted L q -maximal regularity in weighted Besov and Triebel-Lizorkin spaces for the parabolic case, where the spatial weight is a power weight in the Muckenhoupt A ∞ -class. In the Besov space case we have the restriction that the microscopic parameter equals to q . Going beyond the A p -range, where p is the integrability parameter of the Besov or Triebel-Lizorkin space under consideration, yields extra flexibility in the sharp regularity of the boundary inhomogeneities. This extra flexibility allows us to treat rougher boundary data and provides a quantitative smoothing effect on the interior of the domain. The main ingredient is an analysis of anisotropic Poisson operators.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-021-09929-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Boundary conditions ; Boundary value problems ; Flexibility ; Function space ; Functional Analysis ; Geometry ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Parameters ; Potential Theory ; Probability Theory and Stochastic Processes ; Regularity</subject><ispartof>Potential analysis, 2022-12, Vol.57 (4), p.601-669</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f12ee678066928df4d705db496d8c6107204d7421d2362efc4935bf5149f9b5d3</citedby><cites>FETCH-LOGICAL-c363t-f12ee678066928df4d705db496d8c6107204d7421d2362efc4935bf5149f9b5d3</cites><orcidid>0000-0002-2374-7030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11118-021-09929-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11118-021-09929-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Hummel, Felix</creatorcontrib><creatorcontrib>Lindemulder, Nick</creatorcontrib><title>Elliptic and Parabolic Boundary Value Problems in Weighted Function Spaces</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>In this paper we study elliptic and parabolic boundary value problems with inhomogeneous boundary conditions in weighted function spaces of Sobolev, Bessel potential, Besov and Triebel-Lizorkin type. As one of the main results, we solve the problem of weighted L q -maximal regularity in weighted Besov and Triebel-Lizorkin spaces for the parabolic case, where the spatial weight is a power weight in the Muckenhoupt A ∞ -class. In the Besov space case we have the restriction that the microscopic parameter equals to q . Going beyond the A p -range, where p is the integrability parameter of the Besov or Triebel-Lizorkin space under consideration, yields extra flexibility in the sharp regularity of the boundary inhomogeneities. This extra flexibility allows us to treat rougher boundary data and provides a quantitative smoothing effect on the interior of the domain. The main ingredient is an analysis of anisotropic Poisson operators.</description><subject>Boundary conditions</subject><subject>Boundary value problems</subject><subject>Flexibility</subject><subject>Function space</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regularity</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0iTNUZfdVVlwwb-30Dbp2qXb1qRl8dsbreDNuQwzvPeG-SF0TuGSAqirQGOlBBgloDXTZH-AJlQoRuLwdogmoJkkTAI9RichbAGAKZVO0P28rquurwqcNRavM5_lbR2nm3ZobOY_8UtWDw6vfZvXbhdw1eBXV23ee2fxYmiKvmob_NhlhQun6KjM6uDOfvsUPS_mT7NbsnpY3s2uV6TgkvekpMw5qVKQUrPUlolVIGyeaGnTQlJQDOIqYdQyLpkri0RzkZeCJrrUubB8ii7G3M63H4MLvdm2g2_iScMUV4oLkaqoYqOq8G0I3pWm89UufmQomG9mZmRmIjPzw8zso4mPphDFzcb5v-h_XF-Sj26Q</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Hummel, Felix</creator><creator>Lindemulder, Nick</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2374-7030</orcidid></search><sort><creationdate>20221201</creationdate><title>Elliptic and Parabolic Boundary Value Problems in Weighted Function Spaces</title><author>Hummel, Felix ; Lindemulder, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f12ee678066928df4d705db496d8c6107204d7421d2362efc4935bf5149f9b5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Boundary value problems</topic><topic>Flexibility</topic><topic>Function space</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hummel, Felix</creatorcontrib><creatorcontrib>Lindemulder, Nick</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hummel, Felix</au><au>Lindemulder, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elliptic and Parabolic Boundary Value Problems in Weighted Function Spaces</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>57</volume><issue>4</issue><spage>601</spage><epage>669</epage><pages>601-669</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>In this paper we study elliptic and parabolic boundary value problems with inhomogeneous boundary conditions in weighted function spaces of Sobolev, Bessel potential, Besov and Triebel-Lizorkin type. As one of the main results, we solve the problem of weighted L q -maximal regularity in weighted Besov and Triebel-Lizorkin spaces for the parabolic case, where the spatial weight is a power weight in the Muckenhoupt A ∞ -class. In the Besov space case we have the restriction that the microscopic parameter equals to q . Going beyond the A p -range, where p is the integrability parameter of the Besov or Triebel-Lizorkin space under consideration, yields extra flexibility in the sharp regularity of the boundary inhomogeneities. This extra flexibility allows us to treat rougher boundary data and provides a quantitative smoothing effect on the interior of the domain. The main ingredient is an analysis of anisotropic Poisson operators.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-021-09929-w</doi><tpages>69</tpages><orcidid>https://orcid.org/0000-0002-2374-7030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-2601
ispartof Potential analysis, 2022-12, Vol.57 (4), p.601-669
issn 0926-2601
1572-929X
language eng
recordid cdi_proquest_journals_2737735587
source SpringerLink Journals - AutoHoldings
subjects Boundary conditions
Boundary value problems
Flexibility
Function space
Functional Analysis
Geometry
Mathematics
Mathematics and Statistics
Operators (mathematics)
Parameters
Potential Theory
Probability Theory and Stochastic Processes
Regularity
title Elliptic and Parabolic Boundary Value Problems in Weighted Function Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elliptic%20and%20Parabolic%20Boundary%20Value%20Problems%20in%20Weighted%20Function%20Spaces&rft.jtitle=Potential%20analysis&rft.au=Hummel,%20Felix&rft.date=2022-12-01&rft.volume=57&rft.issue=4&rft.spage=601&rft.epage=669&rft.pages=601-669&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-021-09929-w&rft_dat=%3Cproquest_cross%3E2737735587%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737735587&rft_id=info:pmid/&rfr_iscdi=true