Classical Solution of the Mixed Problem for a Homogeneous Wave Equation with Fixed Endpoints
Using the Fourier method, we obtain necessary and sufficient conditions for the existence of a classical solution of the mixed problem for a homogeneous wave equation with summable potential and fixed endpoints and also obtain an explicit representation of the solution in the form of a rapidly conve...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-11, Vol.267 (6), p.787-802 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 802 |
---|---|
container_issue | 6 |
container_start_page | 787 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 267 |
creator | Kornev, V. V. Khromov, A. P. |
description | Using the Fourier method, we obtain necessary and sufficient conditions for the existence of a classical solution of the mixed problem for a homogeneous wave equation with summable potential and fixed endpoints and also obtain an explicit representation of the solution in the form of a rapidly converging series. |
doi_str_mv | 10.1007/s10958-022-06170-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2737734495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A728246906</galeid><sourcerecordid>A728246906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2987-7f177630e9d387715705576e5be3d598417e615c4769a97ca731376f151ad8893</originalsourceid><addsrcrecordid>eNp9kV1LHDEUhgepoNX-gV4FvPIiNplMcpJLWdYqWBQ_6E0hxJkza2RmsiYzVf99425BFhbJRUJ4npyc8xbFd85OOGPwI3FmpKasLClTHBiFnWKfSxBUg5Ff8plBSYWAaq_4mtITy5LSYr_4M-tcSr52HbkN3TT6MJDQkvERyS__ig25juGhw560IRJHzkMfFjhgmBL57f4imT9PbiW9-PGRnK2U-dAsgx_GdFjstq5L-O3_flDcn83vZuf08urnxez0ktal0UCh5QBKMDSN0AD520xKUCgfUDTS6IoDKi7rCpRxBmoHggtQLZfcNVobcVAcrd9dxvA8YRrtU5jikEvaEgSAqCojP6iF69D6oQ1jdHXvU21PodRlpQxTmaJbqPeeo-vCgK3P1xv8yRY-rwZ7X28VjjeEzIz4Oi7clJK9uL3ZZMs1W8eQUsTWLqPvXXyznNn34O06eJuDt6vgLWRJrKWU4WGB8WMan1j_AMuoq8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737734495</pqid></control><display><type>article</type><title>Classical Solution of the Mixed Problem for a Homogeneous Wave Equation with Fixed Endpoints</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kornev, V. V. ; Khromov, A. P.</creator><creatorcontrib>Kornev, V. V. ; Khromov, A. P.</creatorcontrib><description>Using the Fourier method, we obtain necessary and sufficient conditions for the existence of a classical solution of the mixed problem for a homogeneous wave equation with summable potential and fixed endpoints and also obtain an explicit representation of the solution in the form of a rapidly converging series.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-022-06170-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Wave equations</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2022-11, Vol.267 (6), p.787-802</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-022-06170-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-022-06170-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kornev, V. V.</creatorcontrib><creatorcontrib>Khromov, A. P.</creatorcontrib><title>Classical Solution of the Mixed Problem for a Homogeneous Wave Equation with Fixed Endpoints</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>Using the Fourier method, we obtain necessary and sufficient conditions for the existence of a classical solution of the mixed problem for a homogeneous wave equation with summable potential and fixed endpoints and also obtain an explicit representation of the solution in the form of a rapidly converging series.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Wave equations</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LHDEUhgepoNX-gV4FvPIiNplMcpJLWdYqWBQ_6E0hxJkza2RmsiYzVf99425BFhbJRUJ4npyc8xbFd85OOGPwI3FmpKasLClTHBiFnWKfSxBUg5Ff8plBSYWAaq_4mtITy5LSYr_4M-tcSr52HbkN3TT6MJDQkvERyS__ig25juGhw560IRJHzkMfFjhgmBL57f4imT9PbiW9-PGRnK2U-dAsgx_GdFjstq5L-O3_flDcn83vZuf08urnxez0ktal0UCh5QBKMDSN0AD520xKUCgfUDTS6IoDKi7rCpRxBmoHggtQLZfcNVobcVAcrd9dxvA8YRrtU5jikEvaEgSAqCojP6iF69D6oQ1jdHXvU21PodRlpQxTmaJbqPeeo-vCgK3P1xv8yRY-rwZ7X28VjjeEzIz4Oi7clJK9uL3ZZMs1W8eQUsTWLqPvXXyznNn34O06eJuDt6vgLWRJrKWU4WGB8WMan1j_AMuoq8g</recordid><startdate>20221104</startdate><enddate>20221104</enddate><creator>Kornev, V. V.</creator><creator>Khromov, A. P.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20221104</creationdate><title>Classical Solution of the Mixed Problem for a Homogeneous Wave Equation with Fixed Endpoints</title><author>Kornev, V. V. ; Khromov, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2987-7f177630e9d387715705576e5be3d598417e615c4769a97ca731376f151ad8893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kornev, V. V.</creatorcontrib><creatorcontrib>Khromov, A. P.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kornev, V. V.</au><au>Khromov, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classical Solution of the Mixed Problem for a Homogeneous Wave Equation with Fixed Endpoints</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2022-11-04</date><risdate>2022</risdate><volume>267</volume><issue>6</issue><spage>787</spage><epage>802</epage><pages>787-802</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>Using the Fourier method, we obtain necessary and sufficient conditions for the existence of a classical solution of the mixed problem for a homogeneous wave equation with summable potential and fixed endpoints and also obtain an explicit representation of the solution in the form of a rapidly converging series.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-022-06170-7</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2022-11, Vol.267 (6), p.787-802 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2737734495 |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics Wave equations |
title | Classical Solution of the Mixed Problem for a Homogeneous Wave Equation with Fixed Endpoints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A35%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classical%20Solution%20of%20the%20Mixed%20Problem%20for%20a%20Homogeneous%20Wave%20Equation%20with%20Fixed%20Endpoints&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Kornev,%20V.%20V.&rft.date=2022-11-04&rft.volume=267&rft.issue=6&rft.spage=787&rft.epage=802&rft.pages=787-802&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-022-06170-7&rft_dat=%3Cgale_proqu%3EA728246906%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737734495&rft_id=info:pmid/&rft_galeid=A728246906&rfr_iscdi=true |