Correlation notice on the electrochemical dealloying and antibacterial properties of gold–silver alloy nanoparticles

Galvanic replacement reaction was used in the synthesis of bimetallic gold–silver alloy nanoparticles (Au–Ag NPs), where pre-synthesized Ag nanoparticles-polyvinylpyrrolidone (AgNPs-PVP) were used to reduce the aryldiazonium tetrachloroaurate(III) salt in water. TEM images and EDS elemental analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometals 2022-12, Vol.35 (6), p.1307-1323
Hauptverfasser: Parambath, Javad B. M., Ahmady, Islam M., Panicker, Seema, Sin, Aebin, Han, Changseok, Mohamed, Ahmed A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1323
container_issue 6
container_start_page 1307
container_title Biometals
container_volume 35
creator Parambath, Javad B. M.
Ahmady, Islam M.
Panicker, Seema
Sin, Aebin
Han, Changseok
Mohamed, Ahmed A.
description Galvanic replacement reaction was used in the synthesis of bimetallic gold–silver alloy nanoparticles (Au–Ag NPs), where pre-synthesized Ag nanoparticles-polyvinylpyrrolidone (AgNPs-PVP) were used to reduce the aryldiazonium tetrachloroaurate(III) salt in water. TEM images and EDS elemental analysis showed the formation of spherical Au–Ag NPs with sizes of 12.8 ± 4.9 nm and 25.6 ± 14.4 nm for corresponding Au–Ag ratios and termed as Au 0.91 Ag 0.09 and Au 0.79 Ag 0.21 , respectively, with different concentrations of the gold precursor. The hydrodynamic sizes measured using dynamic light scattering are 46.4 nm and 74.8 nm with corresponding zeta potentials of − 44.56 and − 25.09 mV in water, for Au 0.91 Ag 0.09 and Au 0.79 Ag 0.21 respectively. Oxidative leachability of Ag ion studies from the starting AgNPs-PVP in 1 M NaCl showed a significant decrease in the plasmon peak after 8 h, indicating the complete dissolution of Ag ions, however, there is enhanced oxidation resistivity of Ag from Au–Ag NPs even after 24 h. Electrochemical studies on glassy carbon electrodes displayed a low oxidation peak in aqueous solutions of 20 mM KCl at 0.16 V and KNO 3 at 0.33 V vs. saturated calomel electrode (SCE). We studied the antibacterial activity of Au–Ag alloy nanoparticles against gram-positive Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and gram-negative Escherichia coli , Salmonella typhimurium, and Pseudomonas aeruginosa . Our findings demonstrated superior antibacterial activity of Au–Ag NPs compared with AgNPs-PVP. Moreover, the nanoparticles inhibited the S. epidermidis biofilm formation. Graphical abstract
doi_str_mv 10.1007/s10534-022-00446-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737599108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737599108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4e0a27a63ec37dc58a0716ed3de63cb901525e465b8e5fbdb6206c3dcc6752593</originalsourceid><addsrcrecordid>eNp9UM1OGzEQtlCrEmhfgENlqeel4_Xa3j2iiD8JqRc4W157EoycdWo7IG68A2_YJ8EkFG4cRp7R92d9hBwxOGYA6ndmIHjXQNs2AF0nm4c9MmNCtU2vFP9CZjBI2UDfdfvkIOc7ABgUyG9kn0vWDUL2M3I_jylhMMXHiU6xeIu0buUWKQa0JUV7iytvTaAOTQjx0U9LaiZXp_jR2ILJV3Cd4hpT8ZhpXNBlDO7f03P24R4T3croZKa4NpViA-bv5OvChIw_3t5DcnN2ej2_aK7-nF_OT64ay5UoTYdgWmUkx3o7K3oDikl03KHkdhyAiVZgJ8XYo1iMbpQtSMudtVJVZOCH5NfOt_7v7wZz0Xdxk6YaqVtVI4aBQV9Z7Y5lU8w54UKvk1-Z9KgZ6Neq9a5qXavW26r1QxX9fLPejCt075L_3VYC3xFyhaYlpo_sT2xfAD6ujfc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737599108</pqid></control><display><type>article</type><title>Correlation notice on the electrochemical dealloying and antibacterial properties of gold–silver alloy nanoparticles</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Parambath, Javad B. M. ; Ahmady, Islam M. ; Panicker, Seema ; Sin, Aebin ; Han, Changseok ; Mohamed, Ahmed A.</creator><creatorcontrib>Parambath, Javad B. M. ; Ahmady, Islam M. ; Panicker, Seema ; Sin, Aebin ; Han, Changseok ; Mohamed, Ahmed A.</creatorcontrib><description>Galvanic replacement reaction was used in the synthesis of bimetallic gold–silver alloy nanoparticles (Au–Ag NPs), where pre-synthesized Ag nanoparticles-polyvinylpyrrolidone (AgNPs-PVP) were used to reduce the aryldiazonium tetrachloroaurate(III) salt in water. TEM images and EDS elemental analysis showed the formation of spherical Au–Ag NPs with sizes of 12.8 ± 4.9 nm and 25.6 ± 14.4 nm for corresponding Au–Ag ratios and termed as Au 0.91 Ag 0.09 and Au 0.79 Ag 0.21 , respectively, with different concentrations of the gold precursor. The hydrodynamic sizes measured using dynamic light scattering are 46.4 nm and 74.8 nm with corresponding zeta potentials of − 44.56 and − 25.09 mV in water, for Au 0.91 Ag 0.09 and Au 0.79 Ag 0.21 respectively. Oxidative leachability of Ag ion studies from the starting AgNPs-PVP in 1 M NaCl showed a significant decrease in the plasmon peak after 8 h, indicating the complete dissolution of Ag ions, however, there is enhanced oxidation resistivity of Ag from Au–Ag NPs even after 24 h. Electrochemical studies on glassy carbon electrodes displayed a low oxidation peak in aqueous solutions of 20 mM KCl at 0.16 V and KNO 3 at 0.33 V vs. saturated calomel electrode (SCE). We studied the antibacterial activity of Au–Ag alloy nanoparticles against gram-positive Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and gram-negative Escherichia coli , Salmonella typhimurium, and Pseudomonas aeruginosa . Our findings demonstrated superior antibacterial activity of Au–Ag NPs compared with AgNPs-PVP. Moreover, the nanoparticles inhibited the S. epidermidis biofilm formation. Graphical abstract</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1007/s10534-022-00446-w</identifier><identifier>PMID: 36149568</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alloys - chemistry ; Alloys - pharmacology ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antibacterial activity ; Aqueous solutions ; Bimetals ; Biochemistry ; Biofilms ; Biomedical and Life Sciences ; Calomel electrode ; Cell Biology ; E coli ; Electrochemistry ; Electrodes ; Glassy carbon ; Gold ; Gold - chemistry ; Gold - pharmacology ; Gold Alloys ; Gold base alloys ; Leaching ; Life Sciences ; Light scattering ; Medicine/Public Health ; Metal Nanoparticles - chemistry ; Microbiology ; Nanoalloys ; Nanoparticles ; Oxidation ; Pharmacology/Toxicology ; Photon correlation spectroscopy ; Plant Physiology ; Polyvinylpyrrolidone ; Potassium chloride ; Pseudomonas aeruginosa ; Silver ; Silver - chemistry ; Silver - pharmacology ; Sodium chloride ; Staphylococcus epidermidis ; Water</subject><ispartof>Biometals, 2022-12, Vol.35 (6), p.1307-1323</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4e0a27a63ec37dc58a0716ed3de63cb901525e465b8e5fbdb6206c3dcc6752593</citedby><cites>FETCH-LOGICAL-c375t-4e0a27a63ec37dc58a0716ed3de63cb901525e465b8e5fbdb6206c3dcc6752593</cites><orcidid>0000-0001-7369-3117 ; 0000-0003-0241-148X ; 0000-0002-5069-2143 ; 0000-0002-3607-5333 ; 0000-0002-8636-2859 ; 0000-0002-1676-9952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10534-022-00446-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10534-022-00446-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36149568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parambath, Javad B. M.</creatorcontrib><creatorcontrib>Ahmady, Islam M.</creatorcontrib><creatorcontrib>Panicker, Seema</creatorcontrib><creatorcontrib>Sin, Aebin</creatorcontrib><creatorcontrib>Han, Changseok</creatorcontrib><creatorcontrib>Mohamed, Ahmed A.</creatorcontrib><title>Correlation notice on the electrochemical dealloying and antibacterial properties of gold–silver alloy nanoparticles</title><title>Biometals</title><addtitle>Biometals</addtitle><addtitle>Biometals</addtitle><description>Galvanic replacement reaction was used in the synthesis of bimetallic gold–silver alloy nanoparticles (Au–Ag NPs), where pre-synthesized Ag nanoparticles-polyvinylpyrrolidone (AgNPs-PVP) were used to reduce the aryldiazonium tetrachloroaurate(III) salt in water. TEM images and EDS elemental analysis showed the formation of spherical Au–Ag NPs with sizes of 12.8 ± 4.9 nm and 25.6 ± 14.4 nm for corresponding Au–Ag ratios and termed as Au 0.91 Ag 0.09 and Au 0.79 Ag 0.21 , respectively, with different concentrations of the gold precursor. The hydrodynamic sizes measured using dynamic light scattering are 46.4 nm and 74.8 nm with corresponding zeta potentials of − 44.56 and − 25.09 mV in water, for Au 0.91 Ag 0.09 and Au 0.79 Ag 0.21 respectively. Oxidative leachability of Ag ion studies from the starting AgNPs-PVP in 1 M NaCl showed a significant decrease in the plasmon peak after 8 h, indicating the complete dissolution of Ag ions, however, there is enhanced oxidation resistivity of Ag from Au–Ag NPs even after 24 h. Electrochemical studies on glassy carbon electrodes displayed a low oxidation peak in aqueous solutions of 20 mM KCl at 0.16 V and KNO 3 at 0.33 V vs. saturated calomel electrode (SCE). We studied the antibacterial activity of Au–Ag alloy nanoparticles against gram-positive Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and gram-negative Escherichia coli , Salmonella typhimurium, and Pseudomonas aeruginosa . Our findings demonstrated superior antibacterial activity of Au–Ag NPs compared with AgNPs-PVP. Moreover, the nanoparticles inhibited the S. epidermidis biofilm formation. Graphical abstract</description><subject>Alloys - chemistry</subject><subject>Alloys - pharmacology</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibacterial activity</subject><subject>Aqueous solutions</subject><subject>Bimetals</subject><subject>Biochemistry</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Calomel electrode</subject><subject>Cell Biology</subject><subject>E coli</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Glassy carbon</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Gold - pharmacology</subject><subject>Gold Alloys</subject><subject>Gold base alloys</subject><subject>Leaching</subject><subject>Life Sciences</subject><subject>Light scattering</subject><subject>Medicine/Public Health</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microbiology</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Pharmacology/Toxicology</subject><subject>Photon correlation spectroscopy</subject><subject>Plant Physiology</subject><subject>Polyvinylpyrrolidone</subject><subject>Potassium chloride</subject><subject>Pseudomonas aeruginosa</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>Silver - pharmacology</subject><subject>Sodium chloride</subject><subject>Staphylococcus epidermidis</subject><subject>Water</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UM1OGzEQtlCrEmhfgENlqeel4_Xa3j2iiD8JqRc4W157EoycdWo7IG68A2_YJ8EkFG4cRp7R92d9hBwxOGYA6ndmIHjXQNs2AF0nm4c9MmNCtU2vFP9CZjBI2UDfdfvkIOc7ABgUyG9kn0vWDUL2M3I_jylhMMXHiU6xeIu0buUWKQa0JUV7iytvTaAOTQjx0U9LaiZXp_jR2ILJV3Cd4hpT8ZhpXNBlDO7f03P24R4T3croZKa4NpViA-bv5OvChIw_3t5DcnN2ej2_aK7-nF_OT64ay5UoTYdgWmUkx3o7K3oDikl03KHkdhyAiVZgJ8XYo1iMbpQtSMudtVJVZOCH5NfOt_7v7wZz0Xdxk6YaqVtVI4aBQV9Z7Y5lU8w54UKvk1-Z9KgZ6Neq9a5qXavW26r1QxX9fLPejCt075L_3VYC3xFyhaYlpo_sT2xfAD6ujfc</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Parambath, Javad B. M.</creator><creator>Ahmady, Islam M.</creator><creator>Panicker, Seema</creator><creator>Sin, Aebin</creator><creator>Han, Changseok</creator><creator>Mohamed, Ahmed A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7369-3117</orcidid><orcidid>https://orcid.org/0000-0003-0241-148X</orcidid><orcidid>https://orcid.org/0000-0002-5069-2143</orcidid><orcidid>https://orcid.org/0000-0002-3607-5333</orcidid><orcidid>https://orcid.org/0000-0002-8636-2859</orcidid><orcidid>https://orcid.org/0000-0002-1676-9952</orcidid></search><sort><creationdate>20221201</creationdate><title>Correlation notice on the electrochemical dealloying and antibacterial properties of gold–silver alloy nanoparticles</title><author>Parambath, Javad B. M. ; Ahmady, Islam M. ; Panicker, Seema ; Sin, Aebin ; Han, Changseok ; Mohamed, Ahmed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4e0a27a63ec37dc58a0716ed3de63cb901525e465b8e5fbdb6206c3dcc6752593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys - chemistry</topic><topic>Alloys - pharmacology</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibacterial activity</topic><topic>Aqueous solutions</topic><topic>Bimetals</topic><topic>Biochemistry</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Calomel electrode</topic><topic>Cell Biology</topic><topic>E coli</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Glassy carbon</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Gold - pharmacology</topic><topic>Gold Alloys</topic><topic>Gold base alloys</topic><topic>Leaching</topic><topic>Life Sciences</topic><topic>Light scattering</topic><topic>Medicine/Public Health</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microbiology</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Pharmacology/Toxicology</topic><topic>Photon correlation spectroscopy</topic><topic>Plant Physiology</topic><topic>Polyvinylpyrrolidone</topic><topic>Potassium chloride</topic><topic>Pseudomonas aeruginosa</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>Silver - pharmacology</topic><topic>Sodium chloride</topic><topic>Staphylococcus epidermidis</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parambath, Javad B. M.</creatorcontrib><creatorcontrib>Ahmady, Islam M.</creatorcontrib><creatorcontrib>Panicker, Seema</creatorcontrib><creatorcontrib>Sin, Aebin</creatorcontrib><creatorcontrib>Han, Changseok</creatorcontrib><creatorcontrib>Mohamed, Ahmed A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parambath, Javad B. M.</au><au>Ahmady, Islam M.</au><au>Panicker, Seema</au><au>Sin, Aebin</au><au>Han, Changseok</au><au>Mohamed, Ahmed A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation notice on the electrochemical dealloying and antibacterial properties of gold–silver alloy nanoparticles</atitle><jtitle>Biometals</jtitle><stitle>Biometals</stitle><addtitle>Biometals</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>35</volume><issue>6</issue><spage>1307</spage><epage>1323</epage><pages>1307-1323</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>Galvanic replacement reaction was used in the synthesis of bimetallic gold–silver alloy nanoparticles (Au–Ag NPs), where pre-synthesized Ag nanoparticles-polyvinylpyrrolidone (AgNPs-PVP) were used to reduce the aryldiazonium tetrachloroaurate(III) salt in water. TEM images and EDS elemental analysis showed the formation of spherical Au–Ag NPs with sizes of 12.8 ± 4.9 nm and 25.6 ± 14.4 nm for corresponding Au–Ag ratios and termed as Au 0.91 Ag 0.09 and Au 0.79 Ag 0.21 , respectively, with different concentrations of the gold precursor. The hydrodynamic sizes measured using dynamic light scattering are 46.4 nm and 74.8 nm with corresponding zeta potentials of − 44.56 and − 25.09 mV in water, for Au 0.91 Ag 0.09 and Au 0.79 Ag 0.21 respectively. Oxidative leachability of Ag ion studies from the starting AgNPs-PVP in 1 M NaCl showed a significant decrease in the plasmon peak after 8 h, indicating the complete dissolution of Ag ions, however, there is enhanced oxidation resistivity of Ag from Au–Ag NPs even after 24 h. Electrochemical studies on glassy carbon electrodes displayed a low oxidation peak in aqueous solutions of 20 mM KCl at 0.16 V and KNO 3 at 0.33 V vs. saturated calomel electrode (SCE). We studied the antibacterial activity of Au–Ag alloy nanoparticles against gram-positive Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, and gram-negative Escherichia coli , Salmonella typhimurium, and Pseudomonas aeruginosa . Our findings demonstrated superior antibacterial activity of Au–Ag NPs compared with AgNPs-PVP. Moreover, the nanoparticles inhibited the S. epidermidis biofilm formation. Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>36149568</pmid><doi>10.1007/s10534-022-00446-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7369-3117</orcidid><orcidid>https://orcid.org/0000-0003-0241-148X</orcidid><orcidid>https://orcid.org/0000-0002-5069-2143</orcidid><orcidid>https://orcid.org/0000-0002-3607-5333</orcidid><orcidid>https://orcid.org/0000-0002-8636-2859</orcidid><orcidid>https://orcid.org/0000-0002-1676-9952</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0966-0844
ispartof Biometals, 2022-12, Vol.35 (6), p.1307-1323
issn 0966-0844
1572-8773
language eng
recordid cdi_proquest_journals_2737599108
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Alloys - chemistry
Alloys - pharmacology
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
Antibacterial activity
Aqueous solutions
Bimetals
Biochemistry
Biofilms
Biomedical and Life Sciences
Calomel electrode
Cell Biology
E coli
Electrochemistry
Electrodes
Glassy carbon
Gold
Gold - chemistry
Gold - pharmacology
Gold Alloys
Gold base alloys
Leaching
Life Sciences
Light scattering
Medicine/Public Health
Metal Nanoparticles - chemistry
Microbiology
Nanoalloys
Nanoparticles
Oxidation
Pharmacology/Toxicology
Photon correlation spectroscopy
Plant Physiology
Polyvinylpyrrolidone
Potassium chloride
Pseudomonas aeruginosa
Silver
Silver - chemistry
Silver - pharmacology
Sodium chloride
Staphylococcus epidermidis
Water
title Correlation notice on the electrochemical dealloying and antibacterial properties of gold–silver alloy nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20notice%20on%20the%20electrochemical%20dealloying%20and%20antibacterial%20properties%20of%20gold%E2%80%93silver%20alloy%20nanoparticles&rft.jtitle=Biometals&rft.au=Parambath,%20Javad%20B.%20M.&rft.date=2022-12-01&rft.volume=35&rft.issue=6&rft.spage=1307&rft.epage=1323&rft.pages=1307-1323&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1007/s10534-022-00446-w&rft_dat=%3Cproquest_cross%3E2737599108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737599108&rft_id=info:pmid/36149568&rfr_iscdi=true