Correlation notice on the electrochemical dealloying and antibacterial properties of gold–silver alloy nanoparticles
Galvanic replacement reaction was used in the synthesis of bimetallic gold–silver alloy nanoparticles (Au–Ag NPs), where pre-synthesized Ag nanoparticles-polyvinylpyrrolidone (AgNPs-PVP) were used to reduce the aryldiazonium tetrachloroaurate(III) salt in water. TEM images and EDS elemental analysis...
Gespeichert in:
Veröffentlicht in: | Biometals 2022-12, Vol.35 (6), p.1307-1323 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1323 |
---|---|
container_issue | 6 |
container_start_page | 1307 |
container_title | Biometals |
container_volume | 35 |
creator | Parambath, Javad B. M. Ahmady, Islam M. Panicker, Seema Sin, Aebin Han, Changseok Mohamed, Ahmed A. |
description | Galvanic replacement reaction was used in the synthesis of bimetallic gold–silver alloy nanoparticles (Au–Ag NPs), where pre-synthesized Ag nanoparticles-polyvinylpyrrolidone (AgNPs-PVP) were used to reduce the aryldiazonium tetrachloroaurate(III) salt in water. TEM images and EDS elemental analysis showed the formation of spherical Au–Ag NPs with sizes of 12.8 ± 4.9 nm and 25.6 ± 14.4 nm for corresponding Au–Ag ratios and termed as Au
0.91
Ag
0.09
and Au
0.79
Ag
0.21
, respectively, with different concentrations of the gold precursor. The hydrodynamic sizes measured using dynamic light scattering are 46.4 nm and 74.8 nm with corresponding zeta potentials of − 44.56 and − 25.09 mV in water, for Au
0.91
Ag
0.09
and Au
0.79
Ag
0.21
respectively. Oxidative leachability of Ag ion studies from the starting AgNPs-PVP in 1 M NaCl showed a significant decrease in the plasmon peak after 8 h, indicating the complete dissolution of Ag ions, however, there is enhanced oxidation resistivity of Ag from Au–Ag NPs even after 24 h. Electrochemical studies on glassy carbon electrodes displayed a low oxidation peak in aqueous solutions of 20 mM KCl at 0.16 V and KNO
3
at 0.33 V vs. saturated calomel electrode (SCE). We studied the antibacterial activity of Au–Ag alloy nanoparticles against gram-positive
Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis,
and gram-negative
Escherichia coli
,
Salmonella typhimurium,
and
Pseudomonas aeruginosa
. Our findings demonstrated superior antibacterial activity of Au–Ag NPs compared with AgNPs-PVP. Moreover, the nanoparticles inhibited the
S. epidermidis
biofilm formation.
Graphical abstract |
doi_str_mv | 10.1007/s10534-022-00446-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737599108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737599108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-4e0a27a63ec37dc58a0716ed3de63cb901525e465b8e5fbdb6206c3dcc6752593</originalsourceid><addsrcrecordid>eNp9UM1OGzEQtlCrEmhfgENlqeel4_Xa3j2iiD8JqRc4W157EoycdWo7IG68A2_YJ8EkFG4cRp7R92d9hBwxOGYA6ndmIHjXQNs2AF0nm4c9MmNCtU2vFP9CZjBI2UDfdfvkIOc7ABgUyG9kn0vWDUL2M3I_jylhMMXHiU6xeIu0buUWKQa0JUV7iytvTaAOTQjx0U9LaiZXp_jR2ILJV3Cd4hpT8ZhpXNBlDO7f03P24R4T3croZKa4NpViA-bv5OvChIw_3t5DcnN2ej2_aK7-nF_OT64ay5UoTYdgWmUkx3o7K3oDikl03KHkdhyAiVZgJ8XYo1iMbpQtSMudtVJVZOCH5NfOt_7v7wZz0Xdxk6YaqVtVI4aBQV9Z7Y5lU8w54UKvk1-Z9KgZ6Neq9a5qXavW26r1QxX9fLPejCt075L_3VYC3xFyhaYlpo_sT2xfAD6ujfc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737599108</pqid></control><display><type>article</type><title>Correlation notice on the electrochemical dealloying and antibacterial properties of gold–silver alloy nanoparticles</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Parambath, Javad B. M. ; Ahmady, Islam M. ; Panicker, Seema ; Sin, Aebin ; Han, Changseok ; Mohamed, Ahmed A.</creator><creatorcontrib>Parambath, Javad B. M. ; Ahmady, Islam M. ; Panicker, Seema ; Sin, Aebin ; Han, Changseok ; Mohamed, Ahmed A.</creatorcontrib><description>Galvanic replacement reaction was used in the synthesis of bimetallic gold–silver alloy nanoparticles (Au–Ag NPs), where pre-synthesized Ag nanoparticles-polyvinylpyrrolidone (AgNPs-PVP) were used to reduce the aryldiazonium tetrachloroaurate(III) salt in water. TEM images and EDS elemental analysis showed the formation of spherical Au–Ag NPs with sizes of 12.8 ± 4.9 nm and 25.6 ± 14.4 nm for corresponding Au–Ag ratios and termed as Au
0.91
Ag
0.09
and Au
0.79
Ag
0.21
, respectively, with different concentrations of the gold precursor. The hydrodynamic sizes measured using dynamic light scattering are 46.4 nm and 74.8 nm with corresponding zeta potentials of − 44.56 and − 25.09 mV in water, for Au
0.91
Ag
0.09
and Au
0.79
Ag
0.21
respectively. Oxidative leachability of Ag ion studies from the starting AgNPs-PVP in 1 M NaCl showed a significant decrease in the plasmon peak after 8 h, indicating the complete dissolution of Ag ions, however, there is enhanced oxidation resistivity of Ag from Au–Ag NPs even after 24 h. Electrochemical studies on glassy carbon electrodes displayed a low oxidation peak in aqueous solutions of 20 mM KCl at 0.16 V and KNO
3
at 0.33 V vs. saturated calomel electrode (SCE). We studied the antibacterial activity of Au–Ag alloy nanoparticles against gram-positive
Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis,
and gram-negative
Escherichia coli
,
Salmonella typhimurium,
and
Pseudomonas aeruginosa
. Our findings demonstrated superior antibacterial activity of Au–Ag NPs compared with AgNPs-PVP. Moreover, the nanoparticles inhibited the
S. epidermidis
biofilm formation.
Graphical abstract</description><identifier>ISSN: 0966-0844</identifier><identifier>EISSN: 1572-8773</identifier><identifier>DOI: 10.1007/s10534-022-00446-w</identifier><identifier>PMID: 36149568</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alloys - chemistry ; Alloys - pharmacology ; Anti-Bacterial Agents - chemistry ; Anti-Bacterial Agents - pharmacology ; Antibacterial activity ; Aqueous solutions ; Bimetals ; Biochemistry ; Biofilms ; Biomedical and Life Sciences ; Calomel electrode ; Cell Biology ; E coli ; Electrochemistry ; Electrodes ; Glassy carbon ; Gold ; Gold - chemistry ; Gold - pharmacology ; Gold Alloys ; Gold base alloys ; Leaching ; Life Sciences ; Light scattering ; Medicine/Public Health ; Metal Nanoparticles - chemistry ; Microbiology ; Nanoalloys ; Nanoparticles ; Oxidation ; Pharmacology/Toxicology ; Photon correlation spectroscopy ; Plant Physiology ; Polyvinylpyrrolidone ; Potassium chloride ; Pseudomonas aeruginosa ; Silver ; Silver - chemistry ; Silver - pharmacology ; Sodium chloride ; Staphylococcus epidermidis ; Water</subject><ispartof>Biometals, 2022-12, Vol.35 (6), p.1307-1323</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-4e0a27a63ec37dc58a0716ed3de63cb901525e465b8e5fbdb6206c3dcc6752593</citedby><cites>FETCH-LOGICAL-c375t-4e0a27a63ec37dc58a0716ed3de63cb901525e465b8e5fbdb6206c3dcc6752593</cites><orcidid>0000-0001-7369-3117 ; 0000-0003-0241-148X ; 0000-0002-5069-2143 ; 0000-0002-3607-5333 ; 0000-0002-8636-2859 ; 0000-0002-1676-9952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10534-022-00446-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10534-022-00446-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36149568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parambath, Javad B. M.</creatorcontrib><creatorcontrib>Ahmady, Islam M.</creatorcontrib><creatorcontrib>Panicker, Seema</creatorcontrib><creatorcontrib>Sin, Aebin</creatorcontrib><creatorcontrib>Han, Changseok</creatorcontrib><creatorcontrib>Mohamed, Ahmed A.</creatorcontrib><title>Correlation notice on the electrochemical dealloying and antibacterial properties of gold–silver alloy nanoparticles</title><title>Biometals</title><addtitle>Biometals</addtitle><addtitle>Biometals</addtitle><description>Galvanic replacement reaction was used in the synthesis of bimetallic gold–silver alloy nanoparticles (Au–Ag NPs), where pre-synthesized Ag nanoparticles-polyvinylpyrrolidone (AgNPs-PVP) were used to reduce the aryldiazonium tetrachloroaurate(III) salt in water. TEM images and EDS elemental analysis showed the formation of spherical Au–Ag NPs with sizes of 12.8 ± 4.9 nm and 25.6 ± 14.4 nm for corresponding Au–Ag ratios and termed as Au
0.91
Ag
0.09
and Au
0.79
Ag
0.21
, respectively, with different concentrations of the gold precursor. The hydrodynamic sizes measured using dynamic light scattering are 46.4 nm and 74.8 nm with corresponding zeta potentials of − 44.56 and − 25.09 mV in water, for Au
0.91
Ag
0.09
and Au
0.79
Ag
0.21
respectively. Oxidative leachability of Ag ion studies from the starting AgNPs-PVP in 1 M NaCl showed a significant decrease in the plasmon peak after 8 h, indicating the complete dissolution of Ag ions, however, there is enhanced oxidation resistivity of Ag from Au–Ag NPs even after 24 h. Electrochemical studies on glassy carbon electrodes displayed a low oxidation peak in aqueous solutions of 20 mM KCl at 0.16 V and KNO
3
at 0.33 V vs. saturated calomel electrode (SCE). We studied the antibacterial activity of Au–Ag alloy nanoparticles against gram-positive
Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis,
and gram-negative
Escherichia coli
,
Salmonella typhimurium,
and
Pseudomonas aeruginosa
. Our findings demonstrated superior antibacterial activity of Au–Ag NPs compared with AgNPs-PVP. Moreover, the nanoparticles inhibited the
S. epidermidis
biofilm formation.
Graphical abstract</description><subject>Alloys - chemistry</subject><subject>Alloys - pharmacology</subject><subject>Anti-Bacterial Agents - chemistry</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibacterial activity</subject><subject>Aqueous solutions</subject><subject>Bimetals</subject><subject>Biochemistry</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Calomel electrode</subject><subject>Cell Biology</subject><subject>E coli</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Glassy carbon</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Gold - pharmacology</subject><subject>Gold Alloys</subject><subject>Gold base alloys</subject><subject>Leaching</subject><subject>Life Sciences</subject><subject>Light scattering</subject><subject>Medicine/Public Health</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microbiology</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Oxidation</subject><subject>Pharmacology/Toxicology</subject><subject>Photon correlation spectroscopy</subject><subject>Plant Physiology</subject><subject>Polyvinylpyrrolidone</subject><subject>Potassium chloride</subject><subject>Pseudomonas aeruginosa</subject><subject>Silver</subject><subject>Silver - chemistry</subject><subject>Silver - pharmacology</subject><subject>Sodium chloride</subject><subject>Staphylococcus epidermidis</subject><subject>Water</subject><issn>0966-0844</issn><issn>1572-8773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UM1OGzEQtlCrEmhfgENlqeel4_Xa3j2iiD8JqRc4W157EoycdWo7IG68A2_YJ8EkFG4cRp7R92d9hBwxOGYA6ndmIHjXQNs2AF0nm4c9MmNCtU2vFP9CZjBI2UDfdfvkIOc7ABgUyG9kn0vWDUL2M3I_jylhMMXHiU6xeIu0buUWKQa0JUV7iytvTaAOTQjx0U9LaiZXp_jR2ILJV3Cd4hpT8ZhpXNBlDO7f03P24R4T3croZKa4NpViA-bv5OvChIw_3t5DcnN2ej2_aK7-nF_OT64ay5UoTYdgWmUkx3o7K3oDikl03KHkdhyAiVZgJ8XYo1iMbpQtSMudtVJVZOCH5NfOt_7v7wZz0Xdxk6YaqVtVI4aBQV9Z7Y5lU8w54UKvk1-Z9KgZ6Neq9a5qXavW26r1QxX9fLPejCt075L_3VYC3xFyhaYlpo_sT2xfAD6ujfc</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Parambath, Javad B. M.</creator><creator>Ahmady, Islam M.</creator><creator>Panicker, Seema</creator><creator>Sin, Aebin</creator><creator>Han, Changseok</creator><creator>Mohamed, Ahmed A.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7369-3117</orcidid><orcidid>https://orcid.org/0000-0003-0241-148X</orcidid><orcidid>https://orcid.org/0000-0002-5069-2143</orcidid><orcidid>https://orcid.org/0000-0002-3607-5333</orcidid><orcidid>https://orcid.org/0000-0002-8636-2859</orcidid><orcidid>https://orcid.org/0000-0002-1676-9952</orcidid></search><sort><creationdate>20221201</creationdate><title>Correlation notice on the electrochemical dealloying and antibacterial properties of gold–silver alloy nanoparticles</title><author>Parambath, Javad B. M. ; Ahmady, Islam M. ; Panicker, Seema ; Sin, Aebin ; Han, Changseok ; Mohamed, Ahmed A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-4e0a27a63ec37dc58a0716ed3de63cb901525e465b8e5fbdb6206c3dcc6752593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys - chemistry</topic><topic>Alloys - pharmacology</topic><topic>Anti-Bacterial Agents - chemistry</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibacterial activity</topic><topic>Aqueous solutions</topic><topic>Bimetals</topic><topic>Biochemistry</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Calomel electrode</topic><topic>Cell Biology</topic><topic>E coli</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Glassy carbon</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Gold - pharmacology</topic><topic>Gold Alloys</topic><topic>Gold base alloys</topic><topic>Leaching</topic><topic>Life Sciences</topic><topic>Light scattering</topic><topic>Medicine/Public Health</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microbiology</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Oxidation</topic><topic>Pharmacology/Toxicology</topic><topic>Photon correlation spectroscopy</topic><topic>Plant Physiology</topic><topic>Polyvinylpyrrolidone</topic><topic>Potassium chloride</topic><topic>Pseudomonas aeruginosa</topic><topic>Silver</topic><topic>Silver - chemistry</topic><topic>Silver - pharmacology</topic><topic>Sodium chloride</topic><topic>Staphylococcus epidermidis</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parambath, Javad B. M.</creatorcontrib><creatorcontrib>Ahmady, Islam M.</creatorcontrib><creatorcontrib>Panicker, Seema</creatorcontrib><creatorcontrib>Sin, Aebin</creatorcontrib><creatorcontrib>Han, Changseok</creatorcontrib><creatorcontrib>Mohamed, Ahmed A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biometals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parambath, Javad B. M.</au><au>Ahmady, Islam M.</au><au>Panicker, Seema</au><au>Sin, Aebin</au><au>Han, Changseok</au><au>Mohamed, Ahmed A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation notice on the electrochemical dealloying and antibacterial properties of gold–silver alloy nanoparticles</atitle><jtitle>Biometals</jtitle><stitle>Biometals</stitle><addtitle>Biometals</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>35</volume><issue>6</issue><spage>1307</spage><epage>1323</epage><pages>1307-1323</pages><issn>0966-0844</issn><eissn>1572-8773</eissn><abstract>Galvanic replacement reaction was used in the synthesis of bimetallic gold–silver alloy nanoparticles (Au–Ag NPs), where pre-synthesized Ag nanoparticles-polyvinylpyrrolidone (AgNPs-PVP) were used to reduce the aryldiazonium tetrachloroaurate(III) salt in water. TEM images and EDS elemental analysis showed the formation of spherical Au–Ag NPs with sizes of 12.8 ± 4.9 nm and 25.6 ± 14.4 nm for corresponding Au–Ag ratios and termed as Au
0.91
Ag
0.09
and Au
0.79
Ag
0.21
, respectively, with different concentrations of the gold precursor. The hydrodynamic sizes measured using dynamic light scattering are 46.4 nm and 74.8 nm with corresponding zeta potentials of − 44.56 and − 25.09 mV in water, for Au
0.91
Ag
0.09
and Au
0.79
Ag
0.21
respectively. Oxidative leachability of Ag ion studies from the starting AgNPs-PVP in 1 M NaCl showed a significant decrease in the plasmon peak after 8 h, indicating the complete dissolution of Ag ions, however, there is enhanced oxidation resistivity of Ag from Au–Ag NPs even after 24 h. Electrochemical studies on glassy carbon electrodes displayed a low oxidation peak in aqueous solutions of 20 mM KCl at 0.16 V and KNO
3
at 0.33 V vs. saturated calomel electrode (SCE). We studied the antibacterial activity of Au–Ag alloy nanoparticles against gram-positive
Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis,
and gram-negative
Escherichia coli
,
Salmonella typhimurium,
and
Pseudomonas aeruginosa
. Our findings demonstrated superior antibacterial activity of Au–Ag NPs compared with AgNPs-PVP. Moreover, the nanoparticles inhibited the
S. epidermidis
biofilm formation.
Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>36149568</pmid><doi>10.1007/s10534-022-00446-w</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7369-3117</orcidid><orcidid>https://orcid.org/0000-0003-0241-148X</orcidid><orcidid>https://orcid.org/0000-0002-5069-2143</orcidid><orcidid>https://orcid.org/0000-0002-3607-5333</orcidid><orcidid>https://orcid.org/0000-0002-8636-2859</orcidid><orcidid>https://orcid.org/0000-0002-1676-9952</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-0844 |
ispartof | Biometals, 2022-12, Vol.35 (6), p.1307-1323 |
issn | 0966-0844 1572-8773 |
language | eng |
recordid | cdi_proquest_journals_2737599108 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Alloys - chemistry Alloys - pharmacology Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology Antibacterial activity Aqueous solutions Bimetals Biochemistry Biofilms Biomedical and Life Sciences Calomel electrode Cell Biology E coli Electrochemistry Electrodes Glassy carbon Gold Gold - chemistry Gold - pharmacology Gold Alloys Gold base alloys Leaching Life Sciences Light scattering Medicine/Public Health Metal Nanoparticles - chemistry Microbiology Nanoalloys Nanoparticles Oxidation Pharmacology/Toxicology Photon correlation spectroscopy Plant Physiology Polyvinylpyrrolidone Potassium chloride Pseudomonas aeruginosa Silver Silver - chemistry Silver - pharmacology Sodium chloride Staphylococcus epidermidis Water |
title | Correlation notice on the electrochemical dealloying and antibacterial properties of gold–silver alloy nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20notice%20on%20the%20electrochemical%20dealloying%20and%20antibacterial%20properties%20of%20gold%E2%80%93silver%20alloy%20nanoparticles&rft.jtitle=Biometals&rft.au=Parambath,%20Javad%20B.%20M.&rft.date=2022-12-01&rft.volume=35&rft.issue=6&rft.spage=1307&rft.epage=1323&rft.pages=1307-1323&rft.issn=0966-0844&rft.eissn=1572-8773&rft_id=info:doi/10.1007/s10534-022-00446-w&rft_dat=%3Cproquest_cross%3E2737599108%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737599108&rft_id=info:pmid/36149568&rfr_iscdi=true |