Sequential support points

By minimizing the energy distance, the support points (SP) method can efficiently compact big training sample into a representative point set with small size. However, when the training sample is deficient, the quality of SP will be greatly reduced. In this paper, a sequential version of SP, called...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 2022-12, Vol.63 (6), p.1757-1775
Hauptverfasser: Xiong, Zikang, Liu, Wenjie, Ning, Jianhui, Qin, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1775
container_issue 6
container_start_page 1757
container_title Statistical papers (Berlin, Germany)
container_volume 63
creator Xiong, Zikang
Liu, Wenjie
Ning, Jianhui
Qin, Hong
description By minimizing the energy distance, the support points (SP) method can efficiently compact big training sample into a representative point set with small size. However, when the training sample is deficient, the quality of SP will be greatly reduced. In this paper, a sequential version of SP, called sequential support point (SSP), is proposed. The new method has two appealing features. First, the construction algorithm of SSP can adaptively update the proposal density in importance sampling process based on the existing information. Second, a hyperparameter is introduced to balance the representativeness of sequentially added points with the representativeness of overall points, so that some special purpose experimental designs, such as augmented design and sliced designs, can be efficiently constructed by setting the hyperparameter.
doi_str_mv 10.1007/s00362-022-01294-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737599099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737599099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-c7a97575f6c8f65f76348cbed0d01c87e55521fa083aef95b5c9599ec22ddc353</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMouFZ_gJ4KnqOTSfN1lOIXFHqonkOaTWRL3V2T3YP99UZX8OZhmMvzvjM8hFwxuGEA6jYDcIkUsAxDs6CHI1IxyTg1yuhjUoHhSAWgPCVnOe8AmNYaKnK5CR9jaIfG7ed57PsuDfO-a9ohn5OT6PY5XPzuGXl9uH9ZPtHV-vF5ebeingscqFfOKKFElF5HKaKSfKH9NtRQA_NaBSEEsuhAcxeiEVvhjTAmeMS6LhV8Rq6n3j515ZU82F03practKi4KiwYUyicKJ-6nFOItk_Nu0ufloH9VmAnBbYosD8K7KGE-BTKBW7fQvqr_if1BTxTXfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737599099</pqid></control><display><type>article</type><title>Sequential support points</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Xiong, Zikang ; Liu, Wenjie ; Ning, Jianhui ; Qin, Hong</creator><creatorcontrib>Xiong, Zikang ; Liu, Wenjie ; Ning, Jianhui ; Qin, Hong</creatorcontrib><description>By minimizing the energy distance, the support points (SP) method can efficiently compact big training sample into a representative point set with small size. However, when the training sample is deficient, the quality of SP will be greatly reduced. In this paper, a sequential version of SP, called sequential support point (SSP), is proposed. The new method has two appealing features. First, the construction algorithm of SSP can adaptively update the proposal density in importance sampling process based on the existing information. Second, a hyperparameter is introduced to balance the representativeness of sequentially added points with the representativeness of overall points, so that some special purpose experimental designs, such as augmented design and sliced designs, can be efficiently constructed by setting the hyperparameter.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/s00362-022-01294-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Energy ; Finance ; Importance sampling ; Insurance ; Management ; Mathematics ; Mathematics and Statistics ; Methods ; Operations Research/Decision Theory ; Optimization ; Probability Theory and Stochastic Processes ; Regular Article ; Statistics ; Statistics for Business ; Training</subject><ispartof>Statistical papers (Berlin, Germany), 2022-12, Vol.63 (6), p.1757-1775</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-c7a97575f6c8f65f76348cbed0d01c87e55521fa083aef95b5c9599ec22ddc353</citedby><cites>FETCH-LOGICAL-c352t-c7a97575f6c8f65f76348cbed0d01c87e55521fa083aef95b5c9599ec22ddc353</cites><orcidid>0000-0002-8180-6094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00362-022-01294-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00362-022-01294-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xiong, Zikang</creatorcontrib><creatorcontrib>Liu, Wenjie</creatorcontrib><creatorcontrib>Ning, Jianhui</creatorcontrib><creatorcontrib>Qin, Hong</creatorcontrib><title>Sequential support points</title><title>Statistical papers (Berlin, Germany)</title><addtitle>Stat Papers</addtitle><description>By minimizing the energy distance, the support points (SP) method can efficiently compact big training sample into a representative point set with small size. However, when the training sample is deficient, the quality of SP will be greatly reduced. In this paper, a sequential version of SP, called sequential support point (SSP), is proposed. The new method has two appealing features. First, the construction algorithm of SSP can adaptively update the proposal density in importance sampling process based on the existing information. Second, a hyperparameter is introduced to balance the representativeness of sequentially added points with the representativeness of overall points, so that some special purpose experimental designs, such as augmented design and sliced designs, can be efficiently constructed by setting the hyperparameter.</description><subject>Algorithms</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Energy</subject><subject>Finance</subject><subject>Importance sampling</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regular Article</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Training</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMouFZ_gJ4KnqOTSfN1lOIXFHqonkOaTWRL3V2T3YP99UZX8OZhmMvzvjM8hFwxuGEA6jYDcIkUsAxDs6CHI1IxyTg1yuhjUoHhSAWgPCVnOe8AmNYaKnK5CR9jaIfG7ed57PsuDfO-a9ohn5OT6PY5XPzuGXl9uH9ZPtHV-vF5ebeingscqFfOKKFElF5HKaKSfKH9NtRQA_NaBSEEsuhAcxeiEVvhjTAmeMS6LhV8Rq6n3j515ZU82F03practKi4KiwYUyicKJ-6nFOItk_Nu0ufloH9VmAnBbYosD8K7KGE-BTKBW7fQvqr_if1BTxTXfA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Xiong, Zikang</creator><creator>Liu, Wenjie</creator><creator>Ning, Jianhui</creator><creator>Qin, Hong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8180-6094</orcidid></search><sort><creationdate>20221201</creationdate><title>Sequential support points</title><author>Xiong, Zikang ; Liu, Wenjie ; Ning, Jianhui ; Qin, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-c7a97575f6c8f65f76348cbed0d01c87e55521fa083aef95b5c9599ec22ddc353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Energy</topic><topic>Finance</topic><topic>Importance sampling</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regular Article</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Zikang</creatorcontrib><creatorcontrib>Liu, Wenjie</creatorcontrib><creatorcontrib>Ning, Jianhui</creatorcontrib><creatorcontrib>Qin, Hong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Zikang</au><au>Liu, Wenjie</au><au>Ning, Jianhui</au><au>Qin, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential support points</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><stitle>Stat Papers</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>63</volume><issue>6</issue><spage>1757</spage><epage>1775</epage><pages>1757-1775</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>By minimizing the energy distance, the support points (SP) method can efficiently compact big training sample into a representative point set with small size. However, when the training sample is deficient, the quality of SP will be greatly reduced. In this paper, a sequential version of SP, called sequential support point (SSP), is proposed. The new method has two appealing features. First, the construction algorithm of SSP can adaptively update the proposal density in importance sampling process based on the existing information. Second, a hyperparameter is introduced to balance the representativeness of sequentially added points with the representativeness of overall points, so that some special purpose experimental designs, such as augmented design and sliced designs, can be efficiently constructed by setting the hyperparameter.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00362-022-01294-z</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8180-6094</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 2022-12, Vol.63 (6), p.1757-1775
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_journals_2737599099
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Algorithms
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Energy
Finance
Importance sampling
Insurance
Management
Mathematics
Mathematics and Statistics
Methods
Operations Research/Decision Theory
Optimization
Probability Theory and Stochastic Processes
Regular Article
Statistics
Statistics for Business
Training
title Sequential support points
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20support%20points&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Xiong,%20Zikang&rft.date=2022-12-01&rft.volume=63&rft.issue=6&rft.spage=1757&rft.epage=1775&rft.pages=1757-1775&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/s00362-022-01294-z&rft_dat=%3Cproquest_cross%3E2737599099%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737599099&rft_id=info:pmid/&rfr_iscdi=true