Extractive Summarization of Call Transcripts
Automatic text summarization is one of the most challenging and interesting problems in natural language processing (NLP). Text summarization is the process of extracting the most important information from the text and presenting it concisely in fewer sentences. Call transcript involves textual des...
Gespeichert in:
Veröffentlicht in: | IEEE access 2022, Vol.10, p.119826-119840 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 119840 |
---|---|
container_issue | |
container_start_page | 119826 |
container_title | IEEE access |
container_volume | 10 |
creator | Biswas, Pratik K. Iakubovich, Aleksandr |
description | Automatic text summarization is one of the most challenging and interesting problems in natural language processing (NLP). Text summarization is the process of extracting the most important information from the text and presenting it concisely in fewer sentences. Call transcript involves textual description of a phone conversation between a customer (caller) and agent(s) (customer representatives). Call transcripts pose unique challenges that are not adequately addressed by most open-source automatic text summarizers, which are developed to summarize continuous texts such as articles and stories. This paper presents an indigenously developed method that combines topic modeling and sentence selection with punctuation restoration in condensing ill-punctuated or un-punctuated call transcripts to produce more readable summaries. This unique combination is what distinguishes the proposed summarizer from other text summarizers. Extensive testing, evaluation and comparisons, with an open-source, state-of-the-art extractive summarizer using three different pre-trained language models, have demonstrated the efficacy of this summarizer for call transcript summarization. The summaries generated by the proposed summarizer are shown to be more compelling and useful based on multiple criteria. |
doi_str_mv | 10.1109/ACCESS.2022.3221404 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2737568496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9946852</ieee_id><doaj_id>oai_doaj_org_article_7c7d94444a704d3ab888bdf69c13bd16</doaj_id><sourcerecordid>2737568496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-be95683c4f12de1c11fe595d609aef46d65fbcb9544593201ac4fdaea155830b3</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqf0FvSx4dWu-NzmWpWqh4KH1HLL5kJRttyZbUX-9qVuK7_Iew8y8YQCYIjhDCMrHeV0v1usZhhjPCMaIQnoFRhhxWRJG-PW_-xZMUtrCPCJDrBqBh8VXH7Xpw6cr1sfdTsfwo_vQ7YvOF7Vu22IT9T6ZGA59ugM3XrfJTc57DN6eFpv6pVy9Pi_r-ao0FIq-bJxkXBBDPcLWIYOQd0wyy6HUzlNuOfONaSSjlEmCIdKZarXTiDFBYEPGYDn42k5v1SGGHOtbdTqoP6CL70rHPpjWqcpUVtI8uoLUEt0IIRrruTSINBbx7HU_eB1i93F0qVfb7hj3Ob7CFalyUCpPLDKwTOxSis5fviKoTi2roWV1almdW86q6aAKzrmLQkrKBcPkFy9Bdzs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737568496</pqid></control><display><type>article</type><title>Extractive Summarization of Call Transcripts</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Biswas, Pratik K. ; Iakubovich, Aleksandr</creator><creatorcontrib>Biswas, Pratik K. ; Iakubovich, Aleksandr</creatorcontrib><description>Automatic text summarization is one of the most challenging and interesting problems in natural language processing (NLP). Text summarization is the process of extracting the most important information from the text and presenting it concisely in fewer sentences. Call transcript involves textual description of a phone conversation between a customer (caller) and agent(s) (customer representatives). Call transcripts pose unique challenges that are not adequately addressed by most open-source automatic text summarizers, which are developed to summarize continuous texts such as articles and stories. This paper presents an indigenously developed method that combines topic modeling and sentence selection with punctuation restoration in condensing ill-punctuated or un-punctuated call transcripts to produce more readable summaries. This unique combination is what distinguishes the proposed summarizer from other text summarizers. Extensive testing, evaluation and comparisons, with an open-source, state-of-the-art extractive summarizer using three different pre-trained language models, have demonstrated the efficacy of this summarizer for call transcript summarization. The summaries generated by the proposed summarizer are shown to be more compelling and useful based on multiple criteria.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3221404</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bit error rate ; Customers ; Data mining ; embedding ; Extractive summarization ; Feature extraction ; Hidden Markov models ; Multiple criterion ; Natural language processing ; punctuation restoration ; Semantics ; Sentences ; Summaries ; Task analysis ; topic models ; Transformers</subject><ispartof>IEEE access, 2022, Vol.10, p.119826-119840</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-be95683c4f12de1c11fe595d609aef46d65fbcb9544593201ac4fdaea155830b3</citedby><cites>FETCH-LOGICAL-c408t-be95683c4f12de1c11fe595d609aef46d65fbcb9544593201ac4fdaea155830b3</cites><orcidid>0000-0002-2287-8039 ; 0000-0001-8570-3108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9946852$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Biswas, Pratik K.</creatorcontrib><creatorcontrib>Iakubovich, Aleksandr</creatorcontrib><title>Extractive Summarization of Call Transcripts</title><title>IEEE access</title><addtitle>Access</addtitle><description>Automatic text summarization is one of the most challenging and interesting problems in natural language processing (NLP). Text summarization is the process of extracting the most important information from the text and presenting it concisely in fewer sentences. Call transcript involves textual description of a phone conversation between a customer (caller) and agent(s) (customer representatives). Call transcripts pose unique challenges that are not adequately addressed by most open-source automatic text summarizers, which are developed to summarize continuous texts such as articles and stories. This paper presents an indigenously developed method that combines topic modeling and sentence selection with punctuation restoration in condensing ill-punctuated or un-punctuated call transcripts to produce more readable summaries. This unique combination is what distinguishes the proposed summarizer from other text summarizers. Extensive testing, evaluation and comparisons, with an open-source, state-of-the-art extractive summarizer using three different pre-trained language models, have demonstrated the efficacy of this summarizer for call transcript summarization. The summaries generated by the proposed summarizer are shown to be more compelling and useful based on multiple criteria.</description><subject>Bit error rate</subject><subject>Customers</subject><subject>Data mining</subject><subject>embedding</subject><subject>Extractive summarization</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Multiple criterion</subject><subject>Natural language processing</subject><subject>punctuation restoration</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Summaries</subject><subject>Task analysis</subject><subject>topic models</subject><subject>Transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUDKJgqf0FvSx4dWu-NzmWpWqh4KH1HLL5kJRttyZbUX-9qVuK7_Iew8y8YQCYIjhDCMrHeV0v1usZhhjPCMaIQnoFRhhxWRJG-PW_-xZMUtrCPCJDrBqBh8VXH7Xpw6cr1sfdTsfwo_vQ7YvOF7Vu22IT9T6ZGA59ugM3XrfJTc57DN6eFpv6pVy9Pi_r-ao0FIq-bJxkXBBDPcLWIYOQd0wyy6HUzlNuOfONaSSjlEmCIdKZarXTiDFBYEPGYDn42k5v1SGGHOtbdTqoP6CL70rHPpjWqcpUVtI8uoLUEt0IIRrruTSINBbx7HU_eB1i93F0qVfb7hj3Ob7CFalyUCpPLDKwTOxSis5fviKoTi2roWV1almdW86q6aAKzrmLQkrKBcPkFy9Bdzs</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Biswas, Pratik K.</creator><creator>Iakubovich, Aleksandr</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2287-8039</orcidid><orcidid>https://orcid.org/0000-0001-8570-3108</orcidid></search><sort><creationdate>2022</creationdate><title>Extractive Summarization of Call Transcripts</title><author>Biswas, Pratik K. ; Iakubovich, Aleksandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-be95683c4f12de1c11fe595d609aef46d65fbcb9544593201ac4fdaea155830b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bit error rate</topic><topic>Customers</topic><topic>Data mining</topic><topic>embedding</topic><topic>Extractive summarization</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Multiple criterion</topic><topic>Natural language processing</topic><topic>punctuation restoration</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Summaries</topic><topic>Task analysis</topic><topic>topic models</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Pratik K.</creatorcontrib><creatorcontrib>Iakubovich, Aleksandr</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Pratik K.</au><au>Iakubovich, Aleksandr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extractive Summarization of Call Transcripts</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>119826</spage><epage>119840</epage><pages>119826-119840</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Automatic text summarization is one of the most challenging and interesting problems in natural language processing (NLP). Text summarization is the process of extracting the most important information from the text and presenting it concisely in fewer sentences. Call transcript involves textual description of a phone conversation between a customer (caller) and agent(s) (customer representatives). Call transcripts pose unique challenges that are not adequately addressed by most open-source automatic text summarizers, which are developed to summarize continuous texts such as articles and stories. This paper presents an indigenously developed method that combines topic modeling and sentence selection with punctuation restoration in condensing ill-punctuated or un-punctuated call transcripts to produce more readable summaries. This unique combination is what distinguishes the proposed summarizer from other text summarizers. Extensive testing, evaluation and comparisons, with an open-source, state-of-the-art extractive summarizer using three different pre-trained language models, have demonstrated the efficacy of this summarizer for call transcript summarization. The summaries generated by the proposed summarizer are shown to be more compelling and useful based on multiple criteria.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3221404</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2287-8039</orcidid><orcidid>https://orcid.org/0000-0001-8570-3108</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2022, Vol.10, p.119826-119840 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2737568496 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Bit error rate Customers Data mining embedding Extractive summarization Feature extraction Hidden Markov models Multiple criterion Natural language processing punctuation restoration Semantics Sentences Summaries Task analysis topic models Transformers |
title | Extractive Summarization of Call Transcripts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extractive%20Summarization%20of%20Call%20Transcripts&rft.jtitle=IEEE%20access&rft.au=Biswas,%20Pratik%20K.&rft.date=2022&rft.volume=10&rft.spage=119826&rft.epage=119840&rft.pages=119826-119840&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3221404&rft_dat=%3Cproquest_ieee_%3E2737568496%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737568496&rft_id=info:pmid/&rft_ieee_id=9946852&rft_doaj_id=oai_doaj_org_article_7c7d94444a704d3ab888bdf69c13bd16&rfr_iscdi=true |