Extractive Summarization of Call Transcripts

Automatic text summarization is one of the most challenging and interesting problems in natural language processing (NLP). Text summarization is the process of extracting the most important information from the text and presenting it concisely in fewer sentences. Call transcript involves textual des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.119826-119840
Hauptverfasser: Biswas, Pratik K., Iakubovich, Aleksandr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119840
container_issue
container_start_page 119826
container_title IEEE access
container_volume 10
creator Biswas, Pratik K.
Iakubovich, Aleksandr
description Automatic text summarization is one of the most challenging and interesting problems in natural language processing (NLP). Text summarization is the process of extracting the most important information from the text and presenting it concisely in fewer sentences. Call transcript involves textual description of a phone conversation between a customer (caller) and agent(s) (customer representatives). Call transcripts pose unique challenges that are not adequately addressed by most open-source automatic text summarizers, which are developed to summarize continuous texts such as articles and stories. This paper presents an indigenously developed method that combines topic modeling and sentence selection with punctuation restoration in condensing ill-punctuated or un-punctuated call transcripts to produce more readable summaries. This unique combination is what distinguishes the proposed summarizer from other text summarizers. Extensive testing, evaluation and comparisons, with an open-source, state-of-the-art extractive summarizer using three different pre-trained language models, have demonstrated the efficacy of this summarizer for call transcript summarization. The summaries generated by the proposed summarizer are shown to be more compelling and useful based on multiple criteria.
doi_str_mv 10.1109/ACCESS.2022.3221404
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2737568496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9946852</ieee_id><doaj_id>oai_doaj_org_article_7c7d94444a704d3ab888bdf69c13bd16</doaj_id><sourcerecordid>2737568496</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-be95683c4f12de1c11fe595d609aef46d65fbcb9544593201ac4fdaea155830b3</originalsourceid><addsrcrecordid>eNpNUE1LAzEUDKJgqf0FvSx4dWu-NzmWpWqh4KH1HLL5kJRttyZbUX-9qVuK7_Iew8y8YQCYIjhDCMrHeV0v1usZhhjPCMaIQnoFRhhxWRJG-PW_-xZMUtrCPCJDrBqBh8VXH7Xpw6cr1sfdTsfwo_vQ7YvOF7Vu22IT9T6ZGA59ugM3XrfJTc57DN6eFpv6pVy9Pi_r-ao0FIq-bJxkXBBDPcLWIYOQd0wyy6HUzlNuOfONaSSjlEmCIdKZarXTiDFBYEPGYDn42k5v1SGGHOtbdTqoP6CL70rHPpjWqcpUVtI8uoLUEt0IIRrruTSINBbx7HU_eB1i93F0qVfb7hj3Ob7CFalyUCpPLDKwTOxSis5fviKoTi2roWV1almdW86q6aAKzrmLQkrKBcPkFy9Bdzs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737568496</pqid></control><display><type>article</type><title>Extractive Summarization of Call Transcripts</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Biswas, Pratik K. ; Iakubovich, Aleksandr</creator><creatorcontrib>Biswas, Pratik K. ; Iakubovich, Aleksandr</creatorcontrib><description>Automatic text summarization is one of the most challenging and interesting problems in natural language processing (NLP). Text summarization is the process of extracting the most important information from the text and presenting it concisely in fewer sentences. Call transcript involves textual description of a phone conversation between a customer (caller) and agent(s) (customer representatives). Call transcripts pose unique challenges that are not adequately addressed by most open-source automatic text summarizers, which are developed to summarize continuous texts such as articles and stories. This paper presents an indigenously developed method that combines topic modeling and sentence selection with punctuation restoration in condensing ill-punctuated or un-punctuated call transcripts to produce more readable summaries. This unique combination is what distinguishes the proposed summarizer from other text summarizers. Extensive testing, evaluation and comparisons, with an open-source, state-of-the-art extractive summarizer using three different pre-trained language models, have demonstrated the efficacy of this summarizer for call transcript summarization. The summaries generated by the proposed summarizer are shown to be more compelling and useful based on multiple criteria.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3221404</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Bit error rate ; Customers ; Data mining ; embedding ; Extractive summarization ; Feature extraction ; Hidden Markov models ; Multiple criterion ; Natural language processing ; punctuation restoration ; Semantics ; Sentences ; Summaries ; Task analysis ; topic models ; Transformers</subject><ispartof>IEEE access, 2022, Vol.10, p.119826-119840</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-be95683c4f12de1c11fe595d609aef46d65fbcb9544593201ac4fdaea155830b3</citedby><cites>FETCH-LOGICAL-c408t-be95683c4f12de1c11fe595d609aef46d65fbcb9544593201ac4fdaea155830b3</cites><orcidid>0000-0002-2287-8039 ; 0000-0001-8570-3108</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9946852$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Biswas, Pratik K.</creatorcontrib><creatorcontrib>Iakubovich, Aleksandr</creatorcontrib><title>Extractive Summarization of Call Transcripts</title><title>IEEE access</title><addtitle>Access</addtitle><description>Automatic text summarization is one of the most challenging and interesting problems in natural language processing (NLP). Text summarization is the process of extracting the most important information from the text and presenting it concisely in fewer sentences. Call transcript involves textual description of a phone conversation between a customer (caller) and agent(s) (customer representatives). Call transcripts pose unique challenges that are not adequately addressed by most open-source automatic text summarizers, which are developed to summarize continuous texts such as articles and stories. This paper presents an indigenously developed method that combines topic modeling and sentence selection with punctuation restoration in condensing ill-punctuated or un-punctuated call transcripts to produce more readable summaries. This unique combination is what distinguishes the proposed summarizer from other text summarizers. Extensive testing, evaluation and comparisons, with an open-source, state-of-the-art extractive summarizer using three different pre-trained language models, have demonstrated the efficacy of this summarizer for call transcript summarization. The summaries generated by the proposed summarizer are shown to be more compelling and useful based on multiple criteria.</description><subject>Bit error rate</subject><subject>Customers</subject><subject>Data mining</subject><subject>embedding</subject><subject>Extractive summarization</subject><subject>Feature extraction</subject><subject>Hidden Markov models</subject><subject>Multiple criterion</subject><subject>Natural language processing</subject><subject>punctuation restoration</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Summaries</subject><subject>Task analysis</subject><subject>topic models</subject><subject>Transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEUDKJgqf0FvSx4dWu-NzmWpWqh4KH1HLL5kJRttyZbUX-9qVuK7_Iew8y8YQCYIjhDCMrHeV0v1usZhhjPCMaIQnoFRhhxWRJG-PW_-xZMUtrCPCJDrBqBh8VXH7Xpw6cr1sfdTsfwo_vQ7YvOF7Vu22IT9T6ZGA59ugM3XrfJTc57DN6eFpv6pVy9Pi_r-ao0FIq-bJxkXBBDPcLWIYOQd0wyy6HUzlNuOfONaSSjlEmCIdKZarXTiDFBYEPGYDn42k5v1SGGHOtbdTqoP6CL70rHPpjWqcpUVtI8uoLUEt0IIRrruTSINBbx7HU_eB1i93F0qVfb7hj3Ob7CFalyUCpPLDKwTOxSis5fviKoTi2roWV1almdW86q6aAKzrmLQkrKBcPkFy9Bdzs</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Biswas, Pratik K.</creator><creator>Iakubovich, Aleksandr</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2287-8039</orcidid><orcidid>https://orcid.org/0000-0001-8570-3108</orcidid></search><sort><creationdate>2022</creationdate><title>Extractive Summarization of Call Transcripts</title><author>Biswas, Pratik K. ; Iakubovich, Aleksandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-be95683c4f12de1c11fe595d609aef46d65fbcb9544593201ac4fdaea155830b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bit error rate</topic><topic>Customers</topic><topic>Data mining</topic><topic>embedding</topic><topic>Extractive summarization</topic><topic>Feature extraction</topic><topic>Hidden Markov models</topic><topic>Multiple criterion</topic><topic>Natural language processing</topic><topic>punctuation restoration</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Summaries</topic><topic>Task analysis</topic><topic>topic models</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Pratik K.</creatorcontrib><creatorcontrib>Iakubovich, Aleksandr</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Pratik K.</au><au>Iakubovich, Aleksandr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extractive Summarization of Call Transcripts</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>119826</spage><epage>119840</epage><pages>119826-119840</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Automatic text summarization is one of the most challenging and interesting problems in natural language processing (NLP). Text summarization is the process of extracting the most important information from the text and presenting it concisely in fewer sentences. Call transcript involves textual description of a phone conversation between a customer (caller) and agent(s) (customer representatives). Call transcripts pose unique challenges that are not adequately addressed by most open-source automatic text summarizers, which are developed to summarize continuous texts such as articles and stories. This paper presents an indigenously developed method that combines topic modeling and sentence selection with punctuation restoration in condensing ill-punctuated or un-punctuated call transcripts to produce more readable summaries. This unique combination is what distinguishes the proposed summarizer from other text summarizers. Extensive testing, evaluation and comparisons, with an open-source, state-of-the-art extractive summarizer using three different pre-trained language models, have demonstrated the efficacy of this summarizer for call transcript summarization. The summaries generated by the proposed summarizer are shown to be more compelling and useful based on multiple criteria.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3221404</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2287-8039</orcidid><orcidid>https://orcid.org/0000-0001-8570-3108</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.119826-119840
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2737568496
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Bit error rate
Customers
Data mining
embedding
Extractive summarization
Feature extraction
Hidden Markov models
Multiple criterion
Natural language processing
punctuation restoration
Semantics
Sentences
Summaries
Task analysis
topic models
Transformers
title Extractive Summarization of Call Transcripts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extractive%20Summarization%20of%20Call%20Transcripts&rft.jtitle=IEEE%20access&rft.au=Biswas,%20Pratik%20K.&rft.date=2022&rft.volume=10&rft.spage=119826&rft.epage=119840&rft.pages=119826-119840&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3221404&rft_dat=%3Cproquest_ieee_%3E2737568496%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737568496&rft_id=info:pmid/&rft_ieee_id=9946852&rft_doaj_id=oai_doaj_org_article_7c7d94444a704d3ab888bdf69c13bd16&rfr_iscdi=true