Effect of substrate condition on wire fed electron beam additive deposition

Electron beam wire fed (EB-WF) additive manufacturing (AM) can be utilised for cost-effective part repair in the aerospace industry and, especially for titanium alloys, the vacuum processing effectively mitigates high temperature contamination for enabling reliable high-performance. This research ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2022-08, Vol.849, p.143448, Article 143448
Hauptverfasser: Sikan, Fatih, Wanjara, Priti, Gholipour, Javad, Atabay, Sila Ece, Brochu, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 143448
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 849
creator Sikan, Fatih
Wanjara, Priti
Gholipour, Javad
Atabay, Sila Ece
Brochu, Mathieu
description Electron beam wire fed (EB-WF) additive manufacturing (AM) can be utilised for cost-effective part repair in the aerospace industry and, especially for titanium alloys, the vacuum processing effectively mitigates high temperature contamination for enabling reliable high-performance. This research advanced EB-WF additive processing and simulation for depositing Ti–6Al–4V thin walls (3 mm in thickness) that emulates repair of damaged fan and compressor blades. The main focus of this research was to understand the effect of the initial substrate microstructure and residual stress profile on the final deposit properties. The results revealed that the EB-WF additive repair process for depositing Ti–6Al–4V yielded minimal distortion (
doi_str_mv 10.1016/j.msea.2022.143448
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737497886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509322008371</els_id><sourcerecordid>2737497886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-93241c2cf2a11f71e3866b6ad96a0a6092851efa3f958a7631fb4cf16ef49c293</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz635apqAF1nWVVzwoueQphNo2W3WpLvivze1noWBgeF5Z4YHoVtKSkqovO_LfQJbMsJYSQUXQp2hBVU1L4Tm8hwtiGa0qIjml-gqpZ4QQgWpFuh17T24EQeP07FJY7QjYBeGthu7MOBcX10E7KHFsMtgzJMG7B7bdkJOgFs4hPRLX6MLb3cJbv76En08rd9Xz8X2bfOyetwWjjM1FpozQR1znllKfU2BKykbaVstLbEyf6oqCt5yrytla8mpb4TzVIIX2jHNl-hu3nuI4fMIaTR9OMYhnzSs5rXQtVIyU2ymXAwpRfDmELu9jd-GEjNJM72ZpJlJmpml5dDDHIL8_6mDaJLrYHDQZgtuNG3o_ov_AA5vdQE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737497886</pqid></control><display><type>article</type><title>Effect of substrate condition on wire fed electron beam additive deposition</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sikan, Fatih ; Wanjara, Priti ; Gholipour, Javad ; Atabay, Sila Ece ; Brochu, Mathieu</creator><creatorcontrib>Sikan, Fatih ; Wanjara, Priti ; Gholipour, Javad ; Atabay, Sila Ece ; Brochu, Mathieu</creatorcontrib><description>Electron beam wire fed (EB-WF) additive manufacturing (AM) can be utilised for cost-effective part repair in the aerospace industry and, especially for titanium alloys, the vacuum processing effectively mitigates high temperature contamination for enabling reliable high-performance. This research advanced EB-WF additive processing and simulation for depositing Ti–6Al–4V thin walls (3 mm in thickness) that emulates repair of damaged fan and compressor blades. The main focus of this research was to understand the effect of the initial substrate microstructure and residual stress profile on the final deposit properties. The results revealed that the EB-WF additive repair process for depositing Ti–6Al–4V yielded minimal distortion (&lt;350 μm) and residual stresses (&lt;150 MPa (0.15σys)). The initial residual stress states of the substrate were found to have a negligible effect on the final residual stress profiles, from the stress relaxation effect during EB-WF AM. Although significant variance in the microstructure for each substrate condition was present after deposition, their mechanical properties were similar. Deposited test specimens had tensile yield and ultimate strength values ranging between 800-830 MPa and 860–880 MPa, respectively. The similar mechanical properties of the interface were correlated with the microstructural features such as layer bands and titanium alpha (α) colonies.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2022.143448</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Aerospace industry ; Compressor blades ; Deposition ; Electron beam wire fed additive manufacturing ; Electron beams ; Finite element simulation ; High temperature ; Mechanical properties ; Microstructure ; Repair ; Residual stress ; Residual stresses ; Stress relaxation ; Substrates ; Thin walls ; Titanium alloys ; Titanium base alloys ; Ultimate tensile strength ; Wire</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2022-08, Vol.849, p.143448, Article 143448</ispartof><rights>2022</rights><rights>Copyright Elsevier BV Aug 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-93241c2cf2a11f71e3866b6ad96a0a6092851efa3f958a7631fb4cf16ef49c293</citedby><cites>FETCH-LOGICAL-c328t-93241c2cf2a11f71e3866b6ad96a0a6092851efa3f958a7631fb4cf16ef49c293</cites><orcidid>0000-0002-6410-0022 ; 0000-0001-7662-984X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2022.143448$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Sikan, Fatih</creatorcontrib><creatorcontrib>Wanjara, Priti</creatorcontrib><creatorcontrib>Gholipour, Javad</creatorcontrib><creatorcontrib>Atabay, Sila Ece</creatorcontrib><creatorcontrib>Brochu, Mathieu</creatorcontrib><title>Effect of substrate condition on wire fed electron beam additive deposition</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Electron beam wire fed (EB-WF) additive manufacturing (AM) can be utilised for cost-effective part repair in the aerospace industry and, especially for titanium alloys, the vacuum processing effectively mitigates high temperature contamination for enabling reliable high-performance. This research advanced EB-WF additive processing and simulation for depositing Ti–6Al–4V thin walls (3 mm in thickness) that emulates repair of damaged fan and compressor blades. The main focus of this research was to understand the effect of the initial substrate microstructure and residual stress profile on the final deposit properties. The results revealed that the EB-WF additive repair process for depositing Ti–6Al–4V yielded minimal distortion (&lt;350 μm) and residual stresses (&lt;150 MPa (0.15σys)). The initial residual stress states of the substrate were found to have a negligible effect on the final residual stress profiles, from the stress relaxation effect during EB-WF AM. Although significant variance in the microstructure for each substrate condition was present after deposition, their mechanical properties were similar. Deposited test specimens had tensile yield and ultimate strength values ranging between 800-830 MPa and 860–880 MPa, respectively. The similar mechanical properties of the interface were correlated with the microstructural features such as layer bands and titanium alpha (α) colonies.</description><subject>Aerospace industry</subject><subject>Compressor blades</subject><subject>Deposition</subject><subject>Electron beam wire fed additive manufacturing</subject><subject>Electron beams</subject><subject>Finite element simulation</subject><subject>High temperature</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Repair</subject><subject>Residual stress</subject><subject>Residual stresses</subject><subject>Stress relaxation</subject><subject>Substrates</subject><subject>Thin walls</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Ultimate tensile strength</subject><subject>Wire</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz635apqAF1nWVVzwoueQphNo2W3WpLvivze1noWBgeF5Z4YHoVtKSkqovO_LfQJbMsJYSQUXQp2hBVU1L4Tm8hwtiGa0qIjml-gqpZ4QQgWpFuh17T24EQeP07FJY7QjYBeGthu7MOBcX10E7KHFsMtgzJMG7B7bdkJOgFs4hPRLX6MLb3cJbv76En08rd9Xz8X2bfOyetwWjjM1FpozQR1znllKfU2BKykbaVstLbEyf6oqCt5yrytla8mpb4TzVIIX2jHNl-hu3nuI4fMIaTR9OMYhnzSs5rXQtVIyU2ymXAwpRfDmELu9jd-GEjNJM72ZpJlJmpml5dDDHIL8_6mDaJLrYHDQZgtuNG3o_ov_AA5vdQE</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Sikan, Fatih</creator><creator>Wanjara, Priti</creator><creator>Gholipour, Javad</creator><creator>Atabay, Sila Ece</creator><creator>Brochu, Mathieu</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-6410-0022</orcidid><orcidid>https://orcid.org/0000-0001-7662-984X</orcidid></search><sort><creationdate>20220801</creationdate><title>Effect of substrate condition on wire fed electron beam additive deposition</title><author>Sikan, Fatih ; Wanjara, Priti ; Gholipour, Javad ; Atabay, Sila Ece ; Brochu, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-93241c2cf2a11f71e3866b6ad96a0a6092851efa3f958a7631fb4cf16ef49c293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace industry</topic><topic>Compressor blades</topic><topic>Deposition</topic><topic>Electron beam wire fed additive manufacturing</topic><topic>Electron beams</topic><topic>Finite element simulation</topic><topic>High temperature</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Repair</topic><topic>Residual stress</topic><topic>Residual stresses</topic><topic>Stress relaxation</topic><topic>Substrates</topic><topic>Thin walls</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Ultimate tensile strength</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sikan, Fatih</creatorcontrib><creatorcontrib>Wanjara, Priti</creatorcontrib><creatorcontrib>Gholipour, Javad</creatorcontrib><creatorcontrib>Atabay, Sila Ece</creatorcontrib><creatorcontrib>Brochu, Mathieu</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sikan, Fatih</au><au>Wanjara, Priti</au><au>Gholipour, Javad</au><au>Atabay, Sila Ece</au><au>Brochu, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of substrate condition on wire fed electron beam additive deposition</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2022-08-01</date><risdate>2022</risdate><volume>849</volume><spage>143448</spage><pages>143448-</pages><artnum>143448</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Electron beam wire fed (EB-WF) additive manufacturing (AM) can be utilised for cost-effective part repair in the aerospace industry and, especially for titanium alloys, the vacuum processing effectively mitigates high temperature contamination for enabling reliable high-performance. This research advanced EB-WF additive processing and simulation for depositing Ti–6Al–4V thin walls (3 mm in thickness) that emulates repair of damaged fan and compressor blades. The main focus of this research was to understand the effect of the initial substrate microstructure and residual stress profile on the final deposit properties. The results revealed that the EB-WF additive repair process for depositing Ti–6Al–4V yielded minimal distortion (&lt;350 μm) and residual stresses (&lt;150 MPa (0.15σys)). The initial residual stress states of the substrate were found to have a negligible effect on the final residual stress profiles, from the stress relaxation effect during EB-WF AM. Although significant variance in the microstructure for each substrate condition was present after deposition, their mechanical properties were similar. Deposited test specimens had tensile yield and ultimate strength values ranging between 800-830 MPa and 860–880 MPa, respectively. The similar mechanical properties of the interface were correlated with the microstructural features such as layer bands and titanium alpha (α) colonies.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2022.143448</doi><orcidid>https://orcid.org/0000-0002-6410-0022</orcidid><orcidid>https://orcid.org/0000-0001-7662-984X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-08, Vol.849, p.143448, Article 143448
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2737497886
source ScienceDirect Journals (5 years ago - present)
subjects Aerospace industry
Compressor blades
Deposition
Electron beam wire fed additive manufacturing
Electron beams
Finite element simulation
High temperature
Mechanical properties
Microstructure
Repair
Residual stress
Residual stresses
Stress relaxation
Substrates
Thin walls
Titanium alloys
Titanium base alloys
Ultimate tensile strength
Wire
title Effect of substrate condition on wire fed electron beam additive deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A11%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20substrate%20condition%20on%20wire%20fed%20electron%20beam%20additive%20deposition&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Sikan,%20Fatih&rft.date=2022-08-01&rft.volume=849&rft.spage=143448&rft.pages=143448-&rft.artnum=143448&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2022.143448&rft_dat=%3Cproquest_cross%3E2737497886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737497886&rft_id=info:pmid/&rft_els_id=S0921509322008371&rfr_iscdi=true