Room Temperature Synthesis of Perovskite Hydroxide, MnSn(OH)6: A Negative Electrode for Supercapacitor
A negative electrode is constructed based on MnSn(OH) 6 nanocubes prepared by a simple precipitation method at room temperature for supercapacitor application. The as-prepared material was structurally and morphologically characterized with the help of XRD, FT-IR, Raman, XPS, FESEM, and HRTEM analys...
Gespeichert in:
Veröffentlicht in: | Electronic materials letters 2022-11, Vol.18 (6), p.559-567 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 567 |
---|---|
container_issue | 6 |
container_start_page | 559 |
container_title | Electronic materials letters |
container_volume | 18 |
creator | Mandal, Manas Chattopadhyay, Krishna Chakraborty, Malay Shin, Wonjae Bera, Kamal Kanti Chatterjee, Sujit Hossain, Akbar Majumdar, Dipanwita Gayen, Arup Nah, Changwoon Bhattacharya, Swapan Kumar |
description | A negative electrode is constructed based on MnSn(OH)
6
nanocubes prepared by a simple precipitation method at room temperature for supercapacitor application. The as-prepared material was structurally and morphologically characterized with the help of XRD, FT-IR, Raman, XPS, FESEM, and HRTEM analyses. The uniform structure and fine edge morphology with high conductivity due to oxygen vacancies promote the redox reaction, which results in high pseudocapacitance. The electrochemical performance is investigated through a three-electrode cell system in a negative potential window (− 1.0 to 0.0 V). A maximum specific capacitance of 209 F/g is calculated at a specific current of 1 A/g. The electrodes also exhibit excellent cycling stability (79% specific capacitance retention after 3000 consecutive GCD cycles).
Graphical Abstract |
doi_str_mv | 10.1007/s13391-022-00366-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737489145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737489145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2344-d8aa08554086d09f38fff966dd38f4915df10a874b5de52e84f5601c8b0e779e3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWLQ_4CrgRsHRl0kmk3FXSrVCtWLrOqSTlzq1ndRkWuzfO1rBnat3F_fcB4eQMwbXDCC_iYzzgiWQpgkAlzIRB6STQsETmSt1SDos5ypRUMAx6ca4AICUs0xy3iHuxfsVneJqjcE0m4B0squbN4xVpN7RZwx-G9-rBulwZ4P_rCxe0cd6Ul-Mh5fylvboE85NU22RDpZYNsFbpM4HOtm0i6VZm7JqfDglR84sI3Z_7wl5vRtM-8NkNL5_6PdGSZlyIRKrjAGVZQKUtFA4rpxzhZTWtkkULLOOgVG5mGUWsxSVcJkEVqoZYJ4XyE_I-X53HfzHBmOjF34T6valTnOeC1UwkbWtdN8qg48xoNPrUK1M2GkG-lup3ivVrVL9o1SLFuJ7KLbleo7hb_of6guzPHhz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737489145</pqid></control><display><type>article</type><title>Room Temperature Synthesis of Perovskite Hydroxide, MnSn(OH)6: A Negative Electrode for Supercapacitor</title><source>SpringerLink Journals</source><creator>Mandal, Manas ; Chattopadhyay, Krishna ; Chakraborty, Malay ; Shin, Wonjae ; Bera, Kamal Kanti ; Chatterjee, Sujit ; Hossain, Akbar ; Majumdar, Dipanwita ; Gayen, Arup ; Nah, Changwoon ; Bhattacharya, Swapan Kumar</creator><creatorcontrib>Mandal, Manas ; Chattopadhyay, Krishna ; Chakraborty, Malay ; Shin, Wonjae ; Bera, Kamal Kanti ; Chatterjee, Sujit ; Hossain, Akbar ; Majumdar, Dipanwita ; Gayen, Arup ; Nah, Changwoon ; Bhattacharya, Swapan Kumar</creatorcontrib><description>A negative electrode is constructed based on MnSn(OH)
6
nanocubes prepared by a simple precipitation method at room temperature for supercapacitor application. The as-prepared material was structurally and morphologically characterized with the help of XRD, FT-IR, Raman, XPS, FESEM, and HRTEM analyses. The uniform structure and fine edge morphology with high conductivity due to oxygen vacancies promote the redox reaction, which results in high pseudocapacitance. The electrochemical performance is investigated through a three-electrode cell system in a negative potential window (− 1.0 to 0.0 V). A maximum specific capacitance of 209 F/g is calculated at a specific current of 1 A/g. The electrodes also exhibit excellent cycling stability (79% specific capacitance retention after 3000 consecutive GCD cycles).
Graphical Abstract</description><identifier>ISSN: 1738-8090</identifier><identifier>EISSN: 2093-6788</identifier><identifier>DOI: 10.1007/s13391-022-00366-4</identifier><language>eng</language><publisher>Seoul: The Korean Institute of Metals and Materials</publisher><subject>Capacitance ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemical analysis ; Electrodes ; Lattice vacancies ; Materials Science ; Morphology ; Nanotechnology ; Nanotechnology and Microengineering ; Optical and Electronic Materials ; Original Article - Nanomaterials ; Perovskites ; Redox reactions ; Room temperature ; Supercapacitors ; X ray photoelectron spectroscopy</subject><ispartof>Electronic materials letters, 2022-11, Vol.18 (6), p.559-567</ispartof><rights>The Author(s) under exclusive licence to The Korean Institute of Metals and Materials 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2344-d8aa08554086d09f38fff966dd38f4915df10a874b5de52e84f5601c8b0e779e3</citedby><cites>FETCH-LOGICAL-c2344-d8aa08554086d09f38fff966dd38f4915df10a874b5de52e84f5601c8b0e779e3</cites><orcidid>0000-0003-4904-0954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13391-022-00366-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13391-022-00366-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mandal, Manas</creatorcontrib><creatorcontrib>Chattopadhyay, Krishna</creatorcontrib><creatorcontrib>Chakraborty, Malay</creatorcontrib><creatorcontrib>Shin, Wonjae</creatorcontrib><creatorcontrib>Bera, Kamal Kanti</creatorcontrib><creatorcontrib>Chatterjee, Sujit</creatorcontrib><creatorcontrib>Hossain, Akbar</creatorcontrib><creatorcontrib>Majumdar, Dipanwita</creatorcontrib><creatorcontrib>Gayen, Arup</creatorcontrib><creatorcontrib>Nah, Changwoon</creatorcontrib><creatorcontrib>Bhattacharya, Swapan Kumar</creatorcontrib><title>Room Temperature Synthesis of Perovskite Hydroxide, MnSn(OH)6: A Negative Electrode for Supercapacitor</title><title>Electronic materials letters</title><addtitle>Electron. Mater. Lett</addtitle><description>A negative electrode is constructed based on MnSn(OH)
6
nanocubes prepared by a simple precipitation method at room temperature for supercapacitor application. The as-prepared material was structurally and morphologically characterized with the help of XRD, FT-IR, Raman, XPS, FESEM, and HRTEM analyses. The uniform structure and fine edge morphology with high conductivity due to oxygen vacancies promote the redox reaction, which results in high pseudocapacitance. The electrochemical performance is investigated through a three-electrode cell system in a negative potential window (− 1.0 to 0.0 V). A maximum specific capacitance of 209 F/g is calculated at a specific current of 1 A/g. The electrodes also exhibit excellent cycling stability (79% specific capacitance retention after 3000 consecutive GCD cycles).
Graphical Abstract</description><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Lattice vacancies</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical and Electronic Materials</subject><subject>Original Article - Nanomaterials</subject><subject>Perovskites</subject><subject>Redox reactions</subject><subject>Room temperature</subject><subject>Supercapacitors</subject><subject>X ray photoelectron spectroscopy</subject><issn>1738-8090</issn><issn>2093-6788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWLQ_4CrgRsHRl0kmk3FXSrVCtWLrOqSTlzq1ndRkWuzfO1rBnat3F_fcB4eQMwbXDCC_iYzzgiWQpgkAlzIRB6STQsETmSt1SDos5ypRUMAx6ca4AICUs0xy3iHuxfsVneJqjcE0m4B0squbN4xVpN7RZwx-G9-rBulwZ4P_rCxe0cd6Ul-Mh5fylvboE85NU22RDpZYNsFbpM4HOtm0i6VZm7JqfDglR84sI3Z_7wl5vRtM-8NkNL5_6PdGSZlyIRKrjAGVZQKUtFA4rpxzhZTWtkkULLOOgVG5mGUWsxSVcJkEVqoZYJ4XyE_I-X53HfzHBmOjF34T6valTnOeC1UwkbWtdN8qg48xoNPrUK1M2GkG-lup3ivVrVL9o1SLFuJ7KLbleo7hb_of6guzPHhz</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Mandal, Manas</creator><creator>Chattopadhyay, Krishna</creator><creator>Chakraborty, Malay</creator><creator>Shin, Wonjae</creator><creator>Bera, Kamal Kanti</creator><creator>Chatterjee, Sujit</creator><creator>Hossain, Akbar</creator><creator>Majumdar, Dipanwita</creator><creator>Gayen, Arup</creator><creator>Nah, Changwoon</creator><creator>Bhattacharya, Swapan Kumar</creator><general>The Korean Institute of Metals and Materials</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4904-0954</orcidid></search><sort><creationdate>20221101</creationdate><title>Room Temperature Synthesis of Perovskite Hydroxide, MnSn(OH)6: A Negative Electrode for Supercapacitor</title><author>Mandal, Manas ; Chattopadhyay, Krishna ; Chakraborty, Malay ; Shin, Wonjae ; Bera, Kamal Kanti ; Chatterjee, Sujit ; Hossain, Akbar ; Majumdar, Dipanwita ; Gayen, Arup ; Nah, Changwoon ; Bhattacharya, Swapan Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2344-d8aa08554086d09f38fff966dd38f4915df10a874b5de52e84f5601c8b0e779e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Lattice vacancies</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical and Electronic Materials</topic><topic>Original Article - Nanomaterials</topic><topic>Perovskites</topic><topic>Redox reactions</topic><topic>Room temperature</topic><topic>Supercapacitors</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Manas</creatorcontrib><creatorcontrib>Chattopadhyay, Krishna</creatorcontrib><creatorcontrib>Chakraborty, Malay</creatorcontrib><creatorcontrib>Shin, Wonjae</creatorcontrib><creatorcontrib>Bera, Kamal Kanti</creatorcontrib><creatorcontrib>Chatterjee, Sujit</creatorcontrib><creatorcontrib>Hossain, Akbar</creatorcontrib><creatorcontrib>Majumdar, Dipanwita</creatorcontrib><creatorcontrib>Gayen, Arup</creatorcontrib><creatorcontrib>Nah, Changwoon</creatorcontrib><creatorcontrib>Bhattacharya, Swapan Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Electronic materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Manas</au><au>Chattopadhyay, Krishna</au><au>Chakraborty, Malay</au><au>Shin, Wonjae</au><au>Bera, Kamal Kanti</au><au>Chatterjee, Sujit</au><au>Hossain, Akbar</au><au>Majumdar, Dipanwita</au><au>Gayen, Arup</au><au>Nah, Changwoon</au><au>Bhattacharya, Swapan Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room Temperature Synthesis of Perovskite Hydroxide, MnSn(OH)6: A Negative Electrode for Supercapacitor</atitle><jtitle>Electronic materials letters</jtitle><stitle>Electron. Mater. Lett</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>18</volume><issue>6</issue><spage>559</spage><epage>567</epage><pages>559-567</pages><issn>1738-8090</issn><eissn>2093-6788</eissn><abstract>A negative electrode is constructed based on MnSn(OH)
6
nanocubes prepared by a simple precipitation method at room temperature for supercapacitor application. The as-prepared material was structurally and morphologically characterized with the help of XRD, FT-IR, Raman, XPS, FESEM, and HRTEM analyses. The uniform structure and fine edge morphology with high conductivity due to oxygen vacancies promote the redox reaction, which results in high pseudocapacitance. The electrochemical performance is investigated through a three-electrode cell system in a negative potential window (− 1.0 to 0.0 V). A maximum specific capacitance of 209 F/g is calculated at a specific current of 1 A/g. The electrodes also exhibit excellent cycling stability (79% specific capacitance retention after 3000 consecutive GCD cycles).
Graphical Abstract</abstract><cop>Seoul</cop><pub>The Korean Institute of Metals and Materials</pub><doi>10.1007/s13391-022-00366-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4904-0954</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-8090 |
ispartof | Electronic materials letters, 2022-11, Vol.18 (6), p.559-567 |
issn | 1738-8090 2093-6788 |
language | eng |
recordid | cdi_proquest_journals_2737489145 |
source | SpringerLink Journals |
subjects | Capacitance Characterization and Evaluation of Materials Chemistry and Materials Science Condensed Matter Physics Electrochemical analysis Electrodes Lattice vacancies Materials Science Morphology Nanotechnology Nanotechnology and Microengineering Optical and Electronic Materials Original Article - Nanomaterials Perovskites Redox reactions Room temperature Supercapacitors X ray photoelectron spectroscopy |
title | Room Temperature Synthesis of Perovskite Hydroxide, MnSn(OH)6: A Negative Electrode for Supercapacitor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%20Temperature%20Synthesis%20of%20Perovskite%20Hydroxide,%20MnSn(OH)6:%20A%20Negative%20Electrode%20for%20Supercapacitor&rft.jtitle=Electronic%20materials%20letters&rft.au=Mandal,%20Manas&rft.date=2022-11-01&rft.volume=18&rft.issue=6&rft.spage=559&rft.epage=567&rft.pages=559-567&rft.issn=1738-8090&rft.eissn=2093-6788&rft_id=info:doi/10.1007/s13391-022-00366-4&rft_dat=%3Cproquest_cross%3E2737489145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737489145&rft_id=info:pmid/&rfr_iscdi=true |