Room Temperature Synthesis of Perovskite Hydroxide, MnSn(OH)6: A Negative Electrode for Supercapacitor

A negative electrode is constructed based on MnSn(OH) 6 nanocubes prepared by a simple precipitation method at room temperature for supercapacitor application. The as-prepared material was structurally and morphologically characterized with the help of XRD, FT-IR, Raman, XPS, FESEM, and HRTEM analys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic materials letters 2022-11, Vol.18 (6), p.559-567
Hauptverfasser: Mandal, Manas, Chattopadhyay, Krishna, Chakraborty, Malay, Shin, Wonjae, Bera, Kamal Kanti, Chatterjee, Sujit, Hossain, Akbar, Majumdar, Dipanwita, Gayen, Arup, Nah, Changwoon, Bhattacharya, Swapan Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 567
container_issue 6
container_start_page 559
container_title Electronic materials letters
container_volume 18
creator Mandal, Manas
Chattopadhyay, Krishna
Chakraborty, Malay
Shin, Wonjae
Bera, Kamal Kanti
Chatterjee, Sujit
Hossain, Akbar
Majumdar, Dipanwita
Gayen, Arup
Nah, Changwoon
Bhattacharya, Swapan Kumar
description A negative electrode is constructed based on MnSn(OH) 6 nanocubes prepared by a simple precipitation method at room temperature for supercapacitor application. The as-prepared material was structurally and morphologically characterized with the help of XRD, FT-IR, Raman, XPS, FESEM, and HRTEM analyses. The uniform structure and fine edge morphology with high conductivity due to oxygen vacancies promote the redox reaction, which results in high pseudocapacitance. The electrochemical performance is investigated through a three-electrode cell system in a negative potential window (− 1.0 to 0.0 V). A maximum specific capacitance of 209 F/g is calculated at a specific current of 1 A/g. The electrodes also exhibit excellent cycling stability (79% specific capacitance retention after 3000 consecutive GCD cycles). Graphical Abstract
doi_str_mv 10.1007/s13391-022-00366-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737489145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737489145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2344-d8aa08554086d09f38fff966dd38f4915df10a874b5de52e84f5601c8b0e779e3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWLQ_4CrgRsHRl0kmk3FXSrVCtWLrOqSTlzq1ndRkWuzfO1rBnat3F_fcB4eQMwbXDCC_iYzzgiWQpgkAlzIRB6STQsETmSt1SDos5ypRUMAx6ca4AICUs0xy3iHuxfsVneJqjcE0m4B0squbN4xVpN7RZwx-G9-rBulwZ4P_rCxe0cd6Ul-Mh5fylvboE85NU22RDpZYNsFbpM4HOtm0i6VZm7JqfDglR84sI3Z_7wl5vRtM-8NkNL5_6PdGSZlyIRKrjAGVZQKUtFA4rpxzhZTWtkkULLOOgVG5mGUWsxSVcJkEVqoZYJ4XyE_I-X53HfzHBmOjF34T6valTnOeC1UwkbWtdN8qg48xoNPrUK1M2GkG-lup3ivVrVL9o1SLFuJ7KLbleo7hb_of6guzPHhz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737489145</pqid></control><display><type>article</type><title>Room Temperature Synthesis of Perovskite Hydroxide, MnSn(OH)6: A Negative Electrode for Supercapacitor</title><source>SpringerLink Journals</source><creator>Mandal, Manas ; Chattopadhyay, Krishna ; Chakraborty, Malay ; Shin, Wonjae ; Bera, Kamal Kanti ; Chatterjee, Sujit ; Hossain, Akbar ; Majumdar, Dipanwita ; Gayen, Arup ; Nah, Changwoon ; Bhattacharya, Swapan Kumar</creator><creatorcontrib>Mandal, Manas ; Chattopadhyay, Krishna ; Chakraborty, Malay ; Shin, Wonjae ; Bera, Kamal Kanti ; Chatterjee, Sujit ; Hossain, Akbar ; Majumdar, Dipanwita ; Gayen, Arup ; Nah, Changwoon ; Bhattacharya, Swapan Kumar</creatorcontrib><description>A negative electrode is constructed based on MnSn(OH) 6 nanocubes prepared by a simple precipitation method at room temperature for supercapacitor application. The as-prepared material was structurally and morphologically characterized with the help of XRD, FT-IR, Raman, XPS, FESEM, and HRTEM analyses. The uniform structure and fine edge morphology with high conductivity due to oxygen vacancies promote the redox reaction, which results in high pseudocapacitance. The electrochemical performance is investigated through a three-electrode cell system in a negative potential window (− 1.0 to 0.0 V). A maximum specific capacitance of 209 F/g is calculated at a specific current of 1 A/g. The electrodes also exhibit excellent cycling stability (79% specific capacitance retention after 3000 consecutive GCD cycles). Graphical Abstract</description><identifier>ISSN: 1738-8090</identifier><identifier>EISSN: 2093-6788</identifier><identifier>DOI: 10.1007/s13391-022-00366-4</identifier><language>eng</language><publisher>Seoul: The Korean Institute of Metals and Materials</publisher><subject>Capacitance ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemical analysis ; Electrodes ; Lattice vacancies ; Materials Science ; Morphology ; Nanotechnology ; Nanotechnology and Microengineering ; Optical and Electronic Materials ; Original Article - Nanomaterials ; Perovskites ; Redox reactions ; Room temperature ; Supercapacitors ; X ray photoelectron spectroscopy</subject><ispartof>Electronic materials letters, 2022-11, Vol.18 (6), p.559-567</ispartof><rights>The Author(s) under exclusive licence to The Korean Institute of Metals and Materials 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2344-d8aa08554086d09f38fff966dd38f4915df10a874b5de52e84f5601c8b0e779e3</citedby><cites>FETCH-LOGICAL-c2344-d8aa08554086d09f38fff966dd38f4915df10a874b5de52e84f5601c8b0e779e3</cites><orcidid>0000-0003-4904-0954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13391-022-00366-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13391-022-00366-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mandal, Manas</creatorcontrib><creatorcontrib>Chattopadhyay, Krishna</creatorcontrib><creatorcontrib>Chakraborty, Malay</creatorcontrib><creatorcontrib>Shin, Wonjae</creatorcontrib><creatorcontrib>Bera, Kamal Kanti</creatorcontrib><creatorcontrib>Chatterjee, Sujit</creatorcontrib><creatorcontrib>Hossain, Akbar</creatorcontrib><creatorcontrib>Majumdar, Dipanwita</creatorcontrib><creatorcontrib>Gayen, Arup</creatorcontrib><creatorcontrib>Nah, Changwoon</creatorcontrib><creatorcontrib>Bhattacharya, Swapan Kumar</creatorcontrib><title>Room Temperature Synthesis of Perovskite Hydroxide, MnSn(OH)6: A Negative Electrode for Supercapacitor</title><title>Electronic materials letters</title><addtitle>Electron. Mater. Lett</addtitle><description>A negative electrode is constructed based on MnSn(OH) 6 nanocubes prepared by a simple precipitation method at room temperature for supercapacitor application. The as-prepared material was structurally and morphologically characterized with the help of XRD, FT-IR, Raman, XPS, FESEM, and HRTEM analyses. The uniform structure and fine edge morphology with high conductivity due to oxygen vacancies promote the redox reaction, which results in high pseudocapacitance. The electrochemical performance is investigated through a three-electrode cell system in a negative potential window (− 1.0 to 0.0 V). A maximum specific capacitance of 209 F/g is calculated at a specific current of 1 A/g. The electrodes also exhibit excellent cycling stability (79% specific capacitance retention after 3000 consecutive GCD cycles). Graphical Abstract</description><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Lattice vacancies</subject><subject>Materials Science</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical and Electronic Materials</subject><subject>Original Article - Nanomaterials</subject><subject>Perovskites</subject><subject>Redox reactions</subject><subject>Room temperature</subject><subject>Supercapacitors</subject><subject>X ray photoelectron spectroscopy</subject><issn>1738-8090</issn><issn>2093-6788</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWLQ_4CrgRsHRl0kmk3FXSrVCtWLrOqSTlzq1ndRkWuzfO1rBnat3F_fcB4eQMwbXDCC_iYzzgiWQpgkAlzIRB6STQsETmSt1SDos5ypRUMAx6ca4AICUs0xy3iHuxfsVneJqjcE0m4B0squbN4xVpN7RZwx-G9-rBulwZ4P_rCxe0cd6Ul-Mh5fylvboE85NU22RDpZYNsFbpM4HOtm0i6VZm7JqfDglR84sI3Z_7wl5vRtM-8NkNL5_6PdGSZlyIRKrjAGVZQKUtFA4rpxzhZTWtkkULLOOgVG5mGUWsxSVcJkEVqoZYJ4XyE_I-X53HfzHBmOjF34T6valTnOeC1UwkbWtdN8qg48xoNPrUK1M2GkG-lup3ivVrVL9o1SLFuJ7KLbleo7hb_of6guzPHhz</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Mandal, Manas</creator><creator>Chattopadhyay, Krishna</creator><creator>Chakraborty, Malay</creator><creator>Shin, Wonjae</creator><creator>Bera, Kamal Kanti</creator><creator>Chatterjee, Sujit</creator><creator>Hossain, Akbar</creator><creator>Majumdar, Dipanwita</creator><creator>Gayen, Arup</creator><creator>Nah, Changwoon</creator><creator>Bhattacharya, Swapan Kumar</creator><general>The Korean Institute of Metals and Materials</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4904-0954</orcidid></search><sort><creationdate>20221101</creationdate><title>Room Temperature Synthesis of Perovskite Hydroxide, MnSn(OH)6: A Negative Electrode for Supercapacitor</title><author>Mandal, Manas ; Chattopadhyay, Krishna ; Chakraborty, Malay ; Shin, Wonjae ; Bera, Kamal Kanti ; Chatterjee, Sujit ; Hossain, Akbar ; Majumdar, Dipanwita ; Gayen, Arup ; Nah, Changwoon ; Bhattacharya, Swapan Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2344-d8aa08554086d09f38fff966dd38f4915df10a874b5de52e84f5601c8b0e779e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Lattice vacancies</topic><topic>Materials Science</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical and Electronic Materials</topic><topic>Original Article - Nanomaterials</topic><topic>Perovskites</topic><topic>Redox reactions</topic><topic>Room temperature</topic><topic>Supercapacitors</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandal, Manas</creatorcontrib><creatorcontrib>Chattopadhyay, Krishna</creatorcontrib><creatorcontrib>Chakraborty, Malay</creatorcontrib><creatorcontrib>Shin, Wonjae</creatorcontrib><creatorcontrib>Bera, Kamal Kanti</creatorcontrib><creatorcontrib>Chatterjee, Sujit</creatorcontrib><creatorcontrib>Hossain, Akbar</creatorcontrib><creatorcontrib>Majumdar, Dipanwita</creatorcontrib><creatorcontrib>Gayen, Arup</creatorcontrib><creatorcontrib>Nah, Changwoon</creatorcontrib><creatorcontrib>Bhattacharya, Swapan Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Electronic materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandal, Manas</au><au>Chattopadhyay, Krishna</au><au>Chakraborty, Malay</au><au>Shin, Wonjae</au><au>Bera, Kamal Kanti</au><au>Chatterjee, Sujit</au><au>Hossain, Akbar</au><au>Majumdar, Dipanwita</au><au>Gayen, Arup</au><au>Nah, Changwoon</au><au>Bhattacharya, Swapan Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room Temperature Synthesis of Perovskite Hydroxide, MnSn(OH)6: A Negative Electrode for Supercapacitor</atitle><jtitle>Electronic materials letters</jtitle><stitle>Electron. Mater. Lett</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>18</volume><issue>6</issue><spage>559</spage><epage>567</epage><pages>559-567</pages><issn>1738-8090</issn><eissn>2093-6788</eissn><abstract>A negative electrode is constructed based on MnSn(OH) 6 nanocubes prepared by a simple precipitation method at room temperature for supercapacitor application. The as-prepared material was structurally and morphologically characterized with the help of XRD, FT-IR, Raman, XPS, FESEM, and HRTEM analyses. The uniform structure and fine edge morphology with high conductivity due to oxygen vacancies promote the redox reaction, which results in high pseudocapacitance. The electrochemical performance is investigated through a three-electrode cell system in a negative potential window (− 1.0 to 0.0 V). A maximum specific capacitance of 209 F/g is calculated at a specific current of 1 A/g. The electrodes also exhibit excellent cycling stability (79% specific capacitance retention after 3000 consecutive GCD cycles). Graphical Abstract</abstract><cop>Seoul</cop><pub>The Korean Institute of Metals and Materials</pub><doi>10.1007/s13391-022-00366-4</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4904-0954</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1738-8090
ispartof Electronic materials letters, 2022-11, Vol.18 (6), p.559-567
issn 1738-8090
2093-6788
language eng
recordid cdi_proquest_journals_2737489145
source SpringerLink Journals
subjects Capacitance
Characterization and Evaluation of Materials
Chemistry and Materials Science
Condensed Matter Physics
Electrochemical analysis
Electrodes
Lattice vacancies
Materials Science
Morphology
Nanotechnology
Nanotechnology and Microengineering
Optical and Electronic Materials
Original Article - Nanomaterials
Perovskites
Redox reactions
Room temperature
Supercapacitors
X ray photoelectron spectroscopy
title Room Temperature Synthesis of Perovskite Hydroxide, MnSn(OH)6: A Negative Electrode for Supercapacitor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A22%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%20Temperature%20Synthesis%20of%20Perovskite%20Hydroxide,%20MnSn(OH)6:%20A%20Negative%20Electrode%20for%20Supercapacitor&rft.jtitle=Electronic%20materials%20letters&rft.au=Mandal,%20Manas&rft.date=2022-11-01&rft.volume=18&rft.issue=6&rft.spage=559&rft.epage=567&rft.pages=559-567&rft.issn=1738-8090&rft.eissn=2093-6788&rft_id=info:doi/10.1007/s13391-022-00366-4&rft_dat=%3Cproquest_cross%3E2737489145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737489145&rft_id=info:pmid/&rfr_iscdi=true