Surface Degradation of Single‐crystalline Ni‐rich Cathode and Regulation Mechanism by Atomic Layer Deposition in Solid‐State Lithium Batteries

Single‐crystalline Ni‐rich cathode (SC‐NCM) has attracted increasing interest owing to its greater capacity retention in advanced solid‐state lithium batteries (SSLBs), while suffers from severe interfacial instability during cycling. Here, via atomic layer deposition, Li3PO4 is introduced to coat S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2022-11, Vol.134 (48), p.n/a
Hauptverfasser: Guo, Hui‐Juan, Sun, Yipeng, Zhao, Yang, Liu, Gui‐Xian, Song, Yue‐Xian, Wan, Jing, Jiang, Ke‐Cheng, Guo, Yu‐Guo, Sun, Xueliang, Wen, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page
container_title Angewandte Chemie
container_volume 134
creator Guo, Hui‐Juan
Sun, Yipeng
Zhao, Yang
Liu, Gui‐Xian
Song, Yue‐Xian
Wan, Jing
Jiang, Ke‐Cheng
Guo, Yu‐Guo
Sun, Xueliang
Wen, Rui
description Single‐crystalline Ni‐rich cathode (SC‐NCM) has attracted increasing interest owing to its greater capacity retention in advanced solid‐state lithium batteries (SSLBs), while suffers from severe interfacial instability during cycling. Here, via atomic layer deposition, Li3PO4 is introduced to coat SC‐NCM (L‐NCM), to suppress undesired side reaction and enhance interfacial stability. The dynamic degradation and surface regulation of SC‐NCM are investigated inside a working SSLB by in situ atomic force microscopy (AFM). We directly observe the uneven cathode electrolyte interphase (CEI) and surface defects on pristine SC‐NCM particle. Remarkably, the formed amorphous LiF‐rich CEI on L‐NCM maintains its initial structure upon cycling, and thus endows the battery with improved cycling stability and excellent rate capability. Such on‐site tracking provides deep insights into surface mechanism and structure–reactivity correlation of SC‐NCM, and thus benefits the optimizations of SSLBs. Insights into the surface mechanism on the single‐crystalline LiNi0.5Co0.2Mn0.3O2 (SC‐NCM) cathode are disclosed by in situ atomic force microscopy in solid‐state batteries. Via atomic layer deposition, the Li3PO4 is introduced to coat SC‐NCM, leading to the uniform formation of LiF‐rich cathode electrolyte interphase and suppression of undesired side reaction, which endows batteries with enhanced interfacial stability, durability and dynamics.
doi_str_mv 10.1002/ange.202211626
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737454593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737454593</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1626-a7c64d79724d6c71a0ce6fec226b6b45209b68ef0b7657c9bf5d0bc6bc0d900f3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMltiTrk4id2MpZSCVIpEYY4c59K6SuNiO0LZeAQGnpAnIaUIRqaTTt_3n-4n5DyEQQjALmW9xAEDxsKQM35AemHCwiASiTgkPYA4DoYsTo_JiXNrAOBMpD3ysWhsKRXSa1xaWUivTU1NSRe6Xlb4-faubOu8rCpdI53rbmG1WtGx9CtTIJV1QR9x2VR78R7VStbabWje0pE3G63oTLZou_itcfob0jVdmEoXXdbCS490pv1KNxt6Jb1Hq9GdkqNSVg7PfmafPN9Mnsa3wexhejcezQK1-zCQQvG4EKlgccGVCCUo5CUqxnjO8zhhkOZ8iCXkgidCpXmZFJArnisoUoAy6pOLfe7WmpcGnc_WprF1dzJjIhJxEidp1FGDPaWscc5imW2t3kjbZiFku-azXfPZb_OdkO6FV11h-w-djebTyZ_7BXB9jR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737454593</pqid></control><display><type>article</type><title>Surface Degradation of Single‐crystalline Ni‐rich Cathode and Regulation Mechanism by Atomic Layer Deposition in Solid‐State Lithium Batteries</title><source>Wiley Online Library All Journals</source><creator>Guo, Hui‐Juan ; Sun, Yipeng ; Zhao, Yang ; Liu, Gui‐Xian ; Song, Yue‐Xian ; Wan, Jing ; Jiang, Ke‐Cheng ; Guo, Yu‐Guo ; Sun, Xueliang ; Wen, Rui</creator><creatorcontrib>Guo, Hui‐Juan ; Sun, Yipeng ; Zhao, Yang ; Liu, Gui‐Xian ; Song, Yue‐Xian ; Wan, Jing ; Jiang, Ke‐Cheng ; Guo, Yu‐Guo ; Sun, Xueliang ; Wen, Rui</creatorcontrib><description>Single‐crystalline Ni‐rich cathode (SC‐NCM) has attracted increasing interest owing to its greater capacity retention in advanced solid‐state lithium batteries (SSLBs), while suffers from severe interfacial instability during cycling. Here, via atomic layer deposition, Li3PO4 is introduced to coat SC‐NCM (L‐NCM), to suppress undesired side reaction and enhance interfacial stability. The dynamic degradation and surface regulation of SC‐NCM are investigated inside a working SSLB by in situ atomic force microscopy (AFM). We directly observe the uneven cathode electrolyte interphase (CEI) and surface defects on pristine SC‐NCM particle. Remarkably, the formed amorphous LiF‐rich CEI on L‐NCM maintains its initial structure upon cycling, and thus endows the battery with improved cycling stability and excellent rate capability. Such on‐site tracking provides deep insights into surface mechanism and structure–reactivity correlation of SC‐NCM, and thus benefits the optimizations of SSLBs. Insights into the surface mechanism on the single‐crystalline LiNi0.5Co0.2Mn0.3O2 (SC‐NCM) cathode are disclosed by in situ atomic force microscopy in solid‐state batteries. Via atomic layer deposition, the Li3PO4 is introduced to coat SC‐NCM, leading to the uniform formation of LiF‐rich cathode electrolyte interphase and suppression of undesired side reaction, which endows batteries with enhanced interfacial stability, durability and dynamics.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202211626</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopy ; Atomic layer epitaxy ; Batteries ; Cathodes ; Chemistry ; Crystal defects ; Cycles ; Degradation ; Dynamic Evolution ; Dynamic stability ; Electrochemical Atomic Force Microscopy ; In Situ Imaging ; Interface stability ; Lithium ; Lithium batteries ; Single-Crystalline Ni-Rich Cathode ; Solid-State Lithium Batteries ; Surface defects ; Surface stability</subject><ispartof>Angewandte Chemie, 2022-11, Vol.134 (48), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1626-a7c64d79724d6c71a0ce6fec226b6b45209b68ef0b7657c9bf5d0bc6bc0d900f3</citedby><cites>FETCH-LOGICAL-c1626-a7c64d79724d6c71a0ce6fec226b6b45209b68ef0b7657c9bf5d0bc6bc0d900f3</cites><orcidid>0000-0003-2644-7452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202211626$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202211626$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Guo, Hui‐Juan</creatorcontrib><creatorcontrib>Sun, Yipeng</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Liu, Gui‐Xian</creatorcontrib><creatorcontrib>Song, Yue‐Xian</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><creatorcontrib>Jiang, Ke‐Cheng</creatorcontrib><creatorcontrib>Guo, Yu‐Guo</creatorcontrib><creatorcontrib>Sun, Xueliang</creatorcontrib><creatorcontrib>Wen, Rui</creatorcontrib><title>Surface Degradation of Single‐crystalline Ni‐rich Cathode and Regulation Mechanism by Atomic Layer Deposition in Solid‐State Lithium Batteries</title><title>Angewandte Chemie</title><description>Single‐crystalline Ni‐rich cathode (SC‐NCM) has attracted increasing interest owing to its greater capacity retention in advanced solid‐state lithium batteries (SSLBs), while suffers from severe interfacial instability during cycling. Here, via atomic layer deposition, Li3PO4 is introduced to coat SC‐NCM (L‐NCM), to suppress undesired side reaction and enhance interfacial stability. The dynamic degradation and surface regulation of SC‐NCM are investigated inside a working SSLB by in situ atomic force microscopy (AFM). We directly observe the uneven cathode electrolyte interphase (CEI) and surface defects on pristine SC‐NCM particle. Remarkably, the formed amorphous LiF‐rich CEI on L‐NCM maintains its initial structure upon cycling, and thus endows the battery with improved cycling stability and excellent rate capability. Such on‐site tracking provides deep insights into surface mechanism and structure–reactivity correlation of SC‐NCM, and thus benefits the optimizations of SSLBs. Insights into the surface mechanism on the single‐crystalline LiNi0.5Co0.2Mn0.3O2 (SC‐NCM) cathode are disclosed by in situ atomic force microscopy in solid‐state batteries. Via atomic layer deposition, the Li3PO4 is introduced to coat SC‐NCM, leading to the uniform formation of LiF‐rich cathode electrolyte interphase and suppression of undesired side reaction, which endows batteries with enhanced interfacial stability, durability and dynamics.</description><subject>Atomic force microscopy</subject><subject>Atomic layer epitaxy</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Crystal defects</subject><subject>Cycles</subject><subject>Degradation</subject><subject>Dynamic Evolution</subject><subject>Dynamic stability</subject><subject>Electrochemical Atomic Force Microscopy</subject><subject>In Situ Imaging</subject><subject>Interface stability</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Single-Crystalline Ni-Rich Cathode</subject><subject>Solid-State Lithium Batteries</subject><subject>Surface defects</subject><subject>Surface stability</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMltiTrk4id2MpZSCVIpEYY4c59K6SuNiO0LZeAQGnpAnIaUIRqaTTt_3n-4n5DyEQQjALmW9xAEDxsKQM35AemHCwiASiTgkPYA4DoYsTo_JiXNrAOBMpD3ysWhsKRXSa1xaWUivTU1NSRe6Xlb4-faubOu8rCpdI53rbmG1WtGx9CtTIJV1QR9x2VR78R7VStbabWje0pE3G63oTLZou_itcfob0jVdmEoXXdbCS490pv1KNxt6Jb1Hq9GdkqNSVg7PfmafPN9Mnsa3wexhejcezQK1-zCQQvG4EKlgccGVCCUo5CUqxnjO8zhhkOZ8iCXkgidCpXmZFJArnisoUoAy6pOLfe7WmpcGnc_WprF1dzJjIhJxEidp1FGDPaWscc5imW2t3kjbZiFku-azXfPZb_OdkO6FV11h-w-djebTyZ_7BXB9jR4</recordid><startdate>20221125</startdate><enddate>20221125</enddate><creator>Guo, Hui‐Juan</creator><creator>Sun, Yipeng</creator><creator>Zhao, Yang</creator><creator>Liu, Gui‐Xian</creator><creator>Song, Yue‐Xian</creator><creator>Wan, Jing</creator><creator>Jiang, Ke‐Cheng</creator><creator>Guo, Yu‐Guo</creator><creator>Sun, Xueliang</creator><creator>Wen, Rui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2644-7452</orcidid></search><sort><creationdate>20221125</creationdate><title>Surface Degradation of Single‐crystalline Ni‐rich Cathode and Regulation Mechanism by Atomic Layer Deposition in Solid‐State Lithium Batteries</title><author>Guo, Hui‐Juan ; Sun, Yipeng ; Zhao, Yang ; Liu, Gui‐Xian ; Song, Yue‐Xian ; Wan, Jing ; Jiang, Ke‐Cheng ; Guo, Yu‐Guo ; Sun, Xueliang ; Wen, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1626-a7c64d79724d6c71a0ce6fec226b6b45209b68ef0b7657c9bf5d0bc6bc0d900f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic force microscopy</topic><topic>Atomic layer epitaxy</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Crystal defects</topic><topic>Cycles</topic><topic>Degradation</topic><topic>Dynamic Evolution</topic><topic>Dynamic stability</topic><topic>Electrochemical Atomic Force Microscopy</topic><topic>In Situ Imaging</topic><topic>Interface stability</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Single-Crystalline Ni-Rich Cathode</topic><topic>Solid-State Lithium Batteries</topic><topic>Surface defects</topic><topic>Surface stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hui‐Juan</creatorcontrib><creatorcontrib>Sun, Yipeng</creatorcontrib><creatorcontrib>Zhao, Yang</creatorcontrib><creatorcontrib>Liu, Gui‐Xian</creatorcontrib><creatorcontrib>Song, Yue‐Xian</creatorcontrib><creatorcontrib>Wan, Jing</creatorcontrib><creatorcontrib>Jiang, Ke‐Cheng</creatorcontrib><creatorcontrib>Guo, Yu‐Guo</creatorcontrib><creatorcontrib>Sun, Xueliang</creatorcontrib><creatorcontrib>Wen, Rui</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hui‐Juan</au><au>Sun, Yipeng</au><au>Zhao, Yang</au><au>Liu, Gui‐Xian</au><au>Song, Yue‐Xian</au><au>Wan, Jing</au><au>Jiang, Ke‐Cheng</au><au>Guo, Yu‐Guo</au><au>Sun, Xueliang</au><au>Wen, Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Degradation of Single‐crystalline Ni‐rich Cathode and Regulation Mechanism by Atomic Layer Deposition in Solid‐State Lithium Batteries</atitle><jtitle>Angewandte Chemie</jtitle><date>2022-11-25</date><risdate>2022</risdate><volume>134</volume><issue>48</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Single‐crystalline Ni‐rich cathode (SC‐NCM) has attracted increasing interest owing to its greater capacity retention in advanced solid‐state lithium batteries (SSLBs), while suffers from severe interfacial instability during cycling. Here, via atomic layer deposition, Li3PO4 is introduced to coat SC‐NCM (L‐NCM), to suppress undesired side reaction and enhance interfacial stability. The dynamic degradation and surface regulation of SC‐NCM are investigated inside a working SSLB by in situ atomic force microscopy (AFM). We directly observe the uneven cathode electrolyte interphase (CEI) and surface defects on pristine SC‐NCM particle. Remarkably, the formed amorphous LiF‐rich CEI on L‐NCM maintains its initial structure upon cycling, and thus endows the battery with improved cycling stability and excellent rate capability. Such on‐site tracking provides deep insights into surface mechanism and structure–reactivity correlation of SC‐NCM, and thus benefits the optimizations of SSLBs. Insights into the surface mechanism on the single‐crystalline LiNi0.5Co0.2Mn0.3O2 (SC‐NCM) cathode are disclosed by in situ atomic force microscopy in solid‐state batteries. Via atomic layer deposition, the Li3PO4 is introduced to coat SC‐NCM, leading to the uniform formation of LiF‐rich cathode electrolyte interphase and suppression of undesired side reaction, which endows batteries with enhanced interfacial stability, durability and dynamics.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202211626</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2644-7452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2022-11, Vol.134 (48), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2737454593
source Wiley Online Library All Journals
subjects Atomic force microscopy
Atomic layer epitaxy
Batteries
Cathodes
Chemistry
Crystal defects
Cycles
Degradation
Dynamic Evolution
Dynamic stability
Electrochemical Atomic Force Microscopy
In Situ Imaging
Interface stability
Lithium
Lithium batteries
Single-Crystalline Ni-Rich Cathode
Solid-State Lithium Batteries
Surface defects
Surface stability
title Surface Degradation of Single‐crystalline Ni‐rich Cathode and Regulation Mechanism by Atomic Layer Deposition in Solid‐State Lithium Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Degradation%20of%20Single%E2%80%90crystalline%20Ni%E2%80%90rich%20Cathode%20and%20Regulation%20Mechanism%20by%20Atomic%20Layer%20Deposition%20in%20Solid%E2%80%90State%20Lithium%20Batteries&rft.jtitle=Angewandte%20Chemie&rft.au=Guo,%20Hui%E2%80%90Juan&rft.date=2022-11-25&rft.volume=134&rft.issue=48&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202211626&rft_dat=%3Cproquest_cross%3E2737454593%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737454593&rft_id=info:pmid/&rfr_iscdi=true