Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy
Improving the lipid composition of feed‐rotifers enhances the survival and growth rates of juvenile fish in aquaculture, but monitoring enrichment profiles using gas chromatography (GC) is slow, labour‐intensive and requires expensive instrumentation. Here, we describe the potential of Raman spectro...
Gespeichert in:
Veröffentlicht in: | Aquaculture research 2022-12, Vol.53 (18), p.6513-6523 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6523 |
---|---|
container_issue | 18 |
container_start_page | 6513 |
container_title | Aquaculture research |
container_volume | 53 |
creator | Killeen, Daniel P. Rooney, Jeremy S. Card, Asli Hegarty, Liam B. Fantham, Warren W. Gordon, Keith C. Moran, Damian |
description | Improving the lipid composition of feed‐rotifers enhances the survival and growth rates of juvenile fish in aquaculture, but monitoring enrichment profiles using gas chromatography (GC) is slow, labour‐intensive and requires expensive instrumentation. Here, we describe the potential of Raman spectroscopy as an alternative, more rapid tool for quantitation of rotifer fatty acid composition in an aquaculture setting. A compositionally diverse sample set was prepared by periodically subsampling rotifers undergoing enrichment using three different feeding regimens. Sampled rotifers were freeze‐dried and their fatty acid content and composition was measured by GC–MS (mass spectrometry). Raman spectra (1064 nm excitation) were acquired with two instruments: a state‐of‐the‐art Fourier transform (FT)‐Raman spectrometer equipped with a liquid nitrogen‐cooled Germanium detector; and a smaller, portable spectrometer equipped with an InGaAs detector. Fatty acid reference data acquired by GC–MS were related to structured variance in each Raman spectral data set using partial least squares regression. The resultant models could accurately quantitate total fatty acids (TFA) and total polyunsaturated fatty acids (PUFA) using both FT‐Raman spectra (Root Mean Square Error [RMSEV] = 5.0 mg g−1 TFA and 6.1 mg g−1 PUFA) and spectra generated using the portable instrument (RMSEV = 4.2 mg g−1 TFA and 5.3 mg g−1 PUFA). Analysis times with the portable instrument were approximately 3 min, compared to 16 min with the FT‐Raman system. Portable Raman spectroscopy may be a useful tool for high throughput screening of rotifer lipid composition when testing and optimizing enrichment protocols and developing microdiets for aquaculture species. |
doi_str_mv | 10.1111/are.16120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737336429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737336429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2920-fa9464e5e4929d886dfe3c61fcc972e19a558b75ccb79835cde6bbf79a10cdde3</originalsourceid><addsrcrecordid>eNp1kEtLAzEQgIMoWKsH_0HAiz1sm8dmd3OspT6gIBQFD0LI5oEp291tkiL7701dr85lBuabBx8AtxjNcYqF9GaOC0zQGZhgWrCMYMTPTzVjGWPlxyW4CmGHEM4RxRPwuZW90_BwlG10UUbXtbCz0Bqjoe-is8bD-wcv1VfqHAPsG6cS1bgwg1bGOECpnA6wHuBW7mULQ29U9F1QXT9cgwsrm2Bu_vIUvD-u31bP2eb16WW13GSKcIIyK3le5IaZnBOuq6rQ1lBVYKsUL4nBXDJW1SVTqi55RZnSpqhrW3KJkdLa0Cm4G_f2vjscTYhi1x19m04KUtKS0iInPFGzkVLpveCNFb13e-kHgZE4yRNJnviVl9jFyH67xgz_g2K5XY8TPyyRcdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737336429</pqid></control><display><type>article</type><title>Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Killeen, Daniel P. ; Rooney, Jeremy S. ; Card, Asli ; Hegarty, Liam B. ; Fantham, Warren W. ; Gordon, Keith C. ; Moran, Damian</creator><creatorcontrib>Killeen, Daniel P. ; Rooney, Jeremy S. ; Card, Asli ; Hegarty, Liam B. ; Fantham, Warren W. ; Gordon, Keith C. ; Moran, Damian</creatorcontrib><description>Improving the lipid composition of feed‐rotifers enhances the survival and growth rates of juvenile fish in aquaculture, but monitoring enrichment profiles using gas chromatography (GC) is slow, labour‐intensive and requires expensive instrumentation. Here, we describe the potential of Raman spectroscopy as an alternative, more rapid tool for quantitation of rotifer fatty acid composition in an aquaculture setting. A compositionally diverse sample set was prepared by periodically subsampling rotifers undergoing enrichment using three different feeding regimens. Sampled rotifers were freeze‐dried and their fatty acid content and composition was measured by GC–MS (mass spectrometry). Raman spectra (1064 nm excitation) were acquired with two instruments: a state‐of‐the‐art Fourier transform (FT)‐Raman spectrometer equipped with a liquid nitrogen‐cooled Germanium detector; and a smaller, portable spectrometer equipped with an InGaAs detector. Fatty acid reference data acquired by GC–MS were related to structured variance in each Raman spectral data set using partial least squares regression. The resultant models could accurately quantitate total fatty acids (TFA) and total polyunsaturated fatty acids (PUFA) using both FT‐Raman spectra (Root Mean Square Error [RMSEV] = 5.0 mg g−1 TFA and 6.1 mg g−1 PUFA) and spectra generated using the portable instrument (RMSEV = 4.2 mg g−1 TFA and 5.3 mg g−1 PUFA). Analysis times with the portable instrument were approximately 3 min, compared to 16 min with the FT‐Raman system. Portable Raman spectroscopy may be a useful tool for high throughput screening of rotifer lipid composition when testing and optimizing enrichment protocols and developing microdiets for aquaculture species.</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.16120</identifier><language>eng</language><publisher>Oxford: Hindawi Limited</publisher><subject>Analytical methods ; Aquaculture ; Biochemical composition ; Chromatography ; Composition ; Data acquisition ; Enrichment ; Excitation spectra ; Fatty acid composition ; Fatty acids ; Feed composition ; Fish ; Fish culture ; Fourier transforms ; Gas chromatography ; Germanium ; Growth rate ; High-throughput screening ; Instrumentation ; Instruments ; Juveniles ; Labour ; Least squares method ; Lipid composition ; Lipids ; Liquid nitrogen ; live feed ; Marine invertebrates ; Mass spectrometry ; Mass spectroscopy ; Monitoring instruments ; Polyculture (aquaculture) ; Polyunsaturated fatty acids ; Portability ; Quantitation ; Raman spectra ; Raman spectroscopy ; Regression analysis ; Rotifera ; rotifers ; Spectra ; Spectroscopy ; Survival</subject><ispartof>Aquaculture research, 2022-12, Vol.53 (18), p.6513-6523</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2920-fa9464e5e4929d886dfe3c61fcc972e19a558b75ccb79835cde6bbf79a10cdde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.16120$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.16120$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Killeen, Daniel P.</creatorcontrib><creatorcontrib>Rooney, Jeremy S.</creatorcontrib><creatorcontrib>Card, Asli</creatorcontrib><creatorcontrib>Hegarty, Liam B.</creatorcontrib><creatorcontrib>Fantham, Warren W.</creatorcontrib><creatorcontrib>Gordon, Keith C.</creatorcontrib><creatorcontrib>Moran, Damian</creatorcontrib><title>Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy</title><title>Aquaculture research</title><description>Improving the lipid composition of feed‐rotifers enhances the survival and growth rates of juvenile fish in aquaculture, but monitoring enrichment profiles using gas chromatography (GC) is slow, labour‐intensive and requires expensive instrumentation. Here, we describe the potential of Raman spectroscopy as an alternative, more rapid tool for quantitation of rotifer fatty acid composition in an aquaculture setting. A compositionally diverse sample set was prepared by periodically subsampling rotifers undergoing enrichment using three different feeding regimens. Sampled rotifers were freeze‐dried and their fatty acid content and composition was measured by GC–MS (mass spectrometry). Raman spectra (1064 nm excitation) were acquired with two instruments: a state‐of‐the‐art Fourier transform (FT)‐Raman spectrometer equipped with a liquid nitrogen‐cooled Germanium detector; and a smaller, portable spectrometer equipped with an InGaAs detector. Fatty acid reference data acquired by GC–MS were related to structured variance in each Raman spectral data set using partial least squares regression. The resultant models could accurately quantitate total fatty acids (TFA) and total polyunsaturated fatty acids (PUFA) using both FT‐Raman spectra (Root Mean Square Error [RMSEV] = 5.0 mg g−1 TFA and 6.1 mg g−1 PUFA) and spectra generated using the portable instrument (RMSEV = 4.2 mg g−1 TFA and 5.3 mg g−1 PUFA). Analysis times with the portable instrument were approximately 3 min, compared to 16 min with the FT‐Raman system. Portable Raman spectroscopy may be a useful tool for high throughput screening of rotifer lipid composition when testing and optimizing enrichment protocols and developing microdiets for aquaculture species.</description><subject>Analytical methods</subject><subject>Aquaculture</subject><subject>Biochemical composition</subject><subject>Chromatography</subject><subject>Composition</subject><subject>Data acquisition</subject><subject>Enrichment</subject><subject>Excitation spectra</subject><subject>Fatty acid composition</subject><subject>Fatty acids</subject><subject>Feed composition</subject><subject>Fish</subject><subject>Fish culture</subject><subject>Fourier transforms</subject><subject>Gas chromatography</subject><subject>Germanium</subject><subject>Growth rate</subject><subject>High-throughput screening</subject><subject>Instrumentation</subject><subject>Instruments</subject><subject>Juveniles</subject><subject>Labour</subject><subject>Least squares method</subject><subject>Lipid composition</subject><subject>Lipids</subject><subject>Liquid nitrogen</subject><subject>live feed</subject><subject>Marine invertebrates</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Monitoring instruments</subject><subject>Polyculture (aquaculture)</subject><subject>Polyunsaturated fatty acids</subject><subject>Portability</subject><subject>Quantitation</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Regression analysis</subject><subject>Rotifera</subject><subject>rotifers</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>Survival</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kEtLAzEQgIMoWKsH_0HAiz1sm8dmd3OspT6gIBQFD0LI5oEp291tkiL7701dr85lBuabBx8AtxjNcYqF9GaOC0zQGZhgWrCMYMTPTzVjGWPlxyW4CmGHEM4RxRPwuZW90_BwlG10UUbXtbCz0Bqjoe-is8bD-wcv1VfqHAPsG6cS1bgwg1bGOECpnA6wHuBW7mULQ29U9F1QXT9cgwsrm2Bu_vIUvD-u31bP2eb16WW13GSKcIIyK3le5IaZnBOuq6rQ1lBVYKsUL4nBXDJW1SVTqi55RZnSpqhrW3KJkdLa0Cm4G_f2vjscTYhi1x19m04KUtKS0iInPFGzkVLpveCNFb13e-kHgZE4yRNJnviVl9jFyH67xgz_g2K5XY8TPyyRcdo</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Killeen, Daniel P.</creator><creator>Rooney, Jeremy S.</creator><creator>Card, Asli</creator><creator>Hegarty, Liam B.</creator><creator>Fantham, Warren W.</creator><creator>Gordon, Keith C.</creator><creator>Moran, Damian</creator><general>Hindawi Limited</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>202212</creationdate><title>Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy</title><author>Killeen, Daniel P. ; Rooney, Jeremy S. ; Card, Asli ; Hegarty, Liam B. ; Fantham, Warren W. ; Gordon, Keith C. ; Moran, Damian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2920-fa9464e5e4929d886dfe3c61fcc972e19a558b75ccb79835cde6bbf79a10cdde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical methods</topic><topic>Aquaculture</topic><topic>Biochemical composition</topic><topic>Chromatography</topic><topic>Composition</topic><topic>Data acquisition</topic><topic>Enrichment</topic><topic>Excitation spectra</topic><topic>Fatty acid composition</topic><topic>Fatty acids</topic><topic>Feed composition</topic><topic>Fish</topic><topic>Fish culture</topic><topic>Fourier transforms</topic><topic>Gas chromatography</topic><topic>Germanium</topic><topic>Growth rate</topic><topic>High-throughput screening</topic><topic>Instrumentation</topic><topic>Instruments</topic><topic>Juveniles</topic><topic>Labour</topic><topic>Least squares method</topic><topic>Lipid composition</topic><topic>Lipids</topic><topic>Liquid nitrogen</topic><topic>live feed</topic><topic>Marine invertebrates</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Monitoring instruments</topic><topic>Polyculture (aquaculture)</topic><topic>Polyunsaturated fatty acids</topic><topic>Portability</topic><topic>Quantitation</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Regression analysis</topic><topic>Rotifera</topic><topic>rotifers</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Killeen, Daniel P.</creatorcontrib><creatorcontrib>Rooney, Jeremy S.</creatorcontrib><creatorcontrib>Card, Asli</creatorcontrib><creatorcontrib>Hegarty, Liam B.</creatorcontrib><creatorcontrib>Fantham, Warren W.</creatorcontrib><creatorcontrib>Gordon, Keith C.</creatorcontrib><creatorcontrib>Moran, Damian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Killeen, Daniel P.</au><au>Rooney, Jeremy S.</au><au>Card, Asli</au><au>Hegarty, Liam B.</au><au>Fantham, Warren W.</au><au>Gordon, Keith C.</au><au>Moran, Damian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy</atitle><jtitle>Aquaculture research</jtitle><date>2022-12</date><risdate>2022</risdate><volume>53</volume><issue>18</issue><spage>6513</spage><epage>6523</epage><pages>6513-6523</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>Improving the lipid composition of feed‐rotifers enhances the survival and growth rates of juvenile fish in aquaculture, but monitoring enrichment profiles using gas chromatography (GC) is slow, labour‐intensive and requires expensive instrumentation. Here, we describe the potential of Raman spectroscopy as an alternative, more rapid tool for quantitation of rotifer fatty acid composition in an aquaculture setting. A compositionally diverse sample set was prepared by periodically subsampling rotifers undergoing enrichment using three different feeding regimens. Sampled rotifers were freeze‐dried and their fatty acid content and composition was measured by GC–MS (mass spectrometry). Raman spectra (1064 nm excitation) were acquired with two instruments: a state‐of‐the‐art Fourier transform (FT)‐Raman spectrometer equipped with a liquid nitrogen‐cooled Germanium detector; and a smaller, portable spectrometer equipped with an InGaAs detector. Fatty acid reference data acquired by GC–MS were related to structured variance in each Raman spectral data set using partial least squares regression. The resultant models could accurately quantitate total fatty acids (TFA) and total polyunsaturated fatty acids (PUFA) using both FT‐Raman spectra (Root Mean Square Error [RMSEV] = 5.0 mg g−1 TFA and 6.1 mg g−1 PUFA) and spectra generated using the portable instrument (RMSEV = 4.2 mg g−1 TFA and 5.3 mg g−1 PUFA). Analysis times with the portable instrument were approximately 3 min, compared to 16 min with the FT‐Raman system. Portable Raman spectroscopy may be a useful tool for high throughput screening of rotifer lipid composition when testing and optimizing enrichment protocols and developing microdiets for aquaculture species.</abstract><cop>Oxford</cop><pub>Hindawi Limited</pub><doi>10.1111/are.16120</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1355-557X |
ispartof | Aquaculture research, 2022-12, Vol.53 (18), p.6513-6523 |
issn | 1355-557X 1365-2109 |
language | eng |
recordid | cdi_proquest_journals_2737336429 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Analytical methods Aquaculture Biochemical composition Chromatography Composition Data acquisition Enrichment Excitation spectra Fatty acid composition Fatty acids Feed composition Fish Fish culture Fourier transforms Gas chromatography Germanium Growth rate High-throughput screening Instrumentation Instruments Juveniles Labour Least squares method Lipid composition Lipids Liquid nitrogen live feed Marine invertebrates Mass spectrometry Mass spectroscopy Monitoring instruments Polyculture (aquaculture) Polyunsaturated fatty acids Portability Quantitation Raman spectra Raman spectroscopy Regression analysis Rotifera rotifers Spectra Spectroscopy Survival |
title | Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20quantitation%20of%20feed%20rotifer%20(Brachionus%20plicatilis)%20fatty%20acids%20by%20Raman%20spectroscopy&rft.jtitle=Aquaculture%20research&rft.au=Killeen,%20Daniel%20P.&rft.date=2022-12&rft.volume=53&rft.issue=18&rft.spage=6513&rft.epage=6523&rft.pages=6513-6523&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.16120&rft_dat=%3Cproquest_cross%3E2737336429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737336429&rft_id=info:pmid/&rfr_iscdi=true |