Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy

Improving the lipid composition of feed‐rotifers enhances the survival and growth rates of juvenile fish in aquaculture, but monitoring enrichment profiles using gas chromatography (GC) is slow, labour‐intensive and requires expensive instrumentation. Here, we describe the potential of Raman spectro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aquaculture research 2022-12, Vol.53 (18), p.6513-6523
Hauptverfasser: Killeen, Daniel P., Rooney, Jeremy S., Card, Asli, Hegarty, Liam B., Fantham, Warren W., Gordon, Keith C., Moran, Damian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6523
container_issue 18
container_start_page 6513
container_title Aquaculture research
container_volume 53
creator Killeen, Daniel P.
Rooney, Jeremy S.
Card, Asli
Hegarty, Liam B.
Fantham, Warren W.
Gordon, Keith C.
Moran, Damian
description Improving the lipid composition of feed‐rotifers enhances the survival and growth rates of juvenile fish in aquaculture, but monitoring enrichment profiles using gas chromatography (GC) is slow, labour‐intensive and requires expensive instrumentation. Here, we describe the potential of Raman spectroscopy as an alternative, more rapid tool for quantitation of rotifer fatty acid composition in an aquaculture setting. A compositionally diverse sample set was prepared by periodically subsampling rotifers undergoing enrichment using three different feeding regimens. Sampled rotifers were freeze‐dried and their fatty acid content and composition was measured by GC–MS (mass spectrometry). Raman spectra (1064 nm excitation) were acquired with two instruments: a state‐of‐the‐art Fourier transform (FT)‐Raman spectrometer equipped with a liquid nitrogen‐cooled Germanium detector; and a smaller, portable spectrometer equipped with an InGaAs detector. Fatty acid reference data acquired by GC–MS were related to structured variance in each Raman spectral data set using partial least squares regression. The resultant models could accurately quantitate total fatty acids (TFA) and total polyunsaturated fatty acids (PUFA) using both FT‐Raman spectra (Root Mean Square Error [RMSEV] = 5.0 mg g−1 TFA and 6.1 mg g−1 PUFA) and spectra generated using the portable instrument (RMSEV = 4.2 mg g−1 TFA and 5.3 mg g−1 PUFA). Analysis times with the portable instrument were approximately 3 min, compared to 16 min with the FT‐Raman system. Portable Raman spectroscopy may be a useful tool for high throughput screening of rotifer lipid composition when testing and optimizing enrichment protocols and developing microdiets for aquaculture species.
doi_str_mv 10.1111/are.16120
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737336429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737336429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2920-fa9464e5e4929d886dfe3c61fcc972e19a558b75ccb79835cde6bbf79a10cdde3</originalsourceid><addsrcrecordid>eNp1kEtLAzEQgIMoWKsH_0HAiz1sm8dmd3OspT6gIBQFD0LI5oEp291tkiL7701dr85lBuabBx8AtxjNcYqF9GaOC0zQGZhgWrCMYMTPTzVjGWPlxyW4CmGHEM4RxRPwuZW90_BwlG10UUbXtbCz0Bqjoe-is8bD-wcv1VfqHAPsG6cS1bgwg1bGOECpnA6wHuBW7mULQ29U9F1QXT9cgwsrm2Bu_vIUvD-u31bP2eb16WW13GSKcIIyK3le5IaZnBOuq6rQ1lBVYKsUL4nBXDJW1SVTqi55RZnSpqhrW3KJkdLa0Cm4G_f2vjscTYhi1x19m04KUtKS0iInPFGzkVLpveCNFb13e-kHgZE4yRNJnviVl9jFyH67xgz_g2K5XY8TPyyRcdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737336429</pqid></control><display><type>article</type><title>Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Killeen, Daniel P. ; Rooney, Jeremy S. ; Card, Asli ; Hegarty, Liam B. ; Fantham, Warren W. ; Gordon, Keith C. ; Moran, Damian</creator><creatorcontrib>Killeen, Daniel P. ; Rooney, Jeremy S. ; Card, Asli ; Hegarty, Liam B. ; Fantham, Warren W. ; Gordon, Keith C. ; Moran, Damian</creatorcontrib><description>Improving the lipid composition of feed‐rotifers enhances the survival and growth rates of juvenile fish in aquaculture, but monitoring enrichment profiles using gas chromatography (GC) is slow, labour‐intensive and requires expensive instrumentation. Here, we describe the potential of Raman spectroscopy as an alternative, more rapid tool for quantitation of rotifer fatty acid composition in an aquaculture setting. A compositionally diverse sample set was prepared by periodically subsampling rotifers undergoing enrichment using three different feeding regimens. Sampled rotifers were freeze‐dried and their fatty acid content and composition was measured by GC–MS (mass spectrometry). Raman spectra (1064 nm excitation) were acquired with two instruments: a state‐of‐the‐art Fourier transform (FT)‐Raman spectrometer equipped with a liquid nitrogen‐cooled Germanium detector; and a smaller, portable spectrometer equipped with an InGaAs detector. Fatty acid reference data acquired by GC–MS were related to structured variance in each Raman spectral data set using partial least squares regression. The resultant models could accurately quantitate total fatty acids (TFA) and total polyunsaturated fatty acids (PUFA) using both FT‐Raman spectra (Root Mean Square Error [RMSEV] = 5.0 mg g−1 TFA and 6.1 mg g−1 PUFA) and spectra generated using the portable instrument (RMSEV = 4.2 mg g−1 TFA and 5.3 mg g−1 PUFA). Analysis times with the portable instrument were approximately 3 min, compared to 16 min with the FT‐Raman system. Portable Raman spectroscopy may be a useful tool for high throughput screening of rotifer lipid composition when testing and optimizing enrichment protocols and developing microdiets for aquaculture species.</description><identifier>ISSN: 1355-557X</identifier><identifier>EISSN: 1365-2109</identifier><identifier>DOI: 10.1111/are.16120</identifier><language>eng</language><publisher>Oxford: Hindawi Limited</publisher><subject>Analytical methods ; Aquaculture ; Biochemical composition ; Chromatography ; Composition ; Data acquisition ; Enrichment ; Excitation spectra ; Fatty acid composition ; Fatty acids ; Feed composition ; Fish ; Fish culture ; Fourier transforms ; Gas chromatography ; Germanium ; Growth rate ; High-throughput screening ; Instrumentation ; Instruments ; Juveniles ; Labour ; Least squares method ; Lipid composition ; Lipids ; Liquid nitrogen ; live feed ; Marine invertebrates ; Mass spectrometry ; Mass spectroscopy ; Monitoring instruments ; Polyculture (aquaculture) ; Polyunsaturated fatty acids ; Portability ; Quantitation ; Raman spectra ; Raman spectroscopy ; Regression analysis ; Rotifera ; rotifers ; Spectra ; Spectroscopy ; Survival</subject><ispartof>Aquaculture research, 2022-12, Vol.53 (18), p.6513-6523</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2920-fa9464e5e4929d886dfe3c61fcc972e19a558b75ccb79835cde6bbf79a10cdde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fare.16120$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fare.16120$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Killeen, Daniel P.</creatorcontrib><creatorcontrib>Rooney, Jeremy S.</creatorcontrib><creatorcontrib>Card, Asli</creatorcontrib><creatorcontrib>Hegarty, Liam B.</creatorcontrib><creatorcontrib>Fantham, Warren W.</creatorcontrib><creatorcontrib>Gordon, Keith C.</creatorcontrib><creatorcontrib>Moran, Damian</creatorcontrib><title>Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy</title><title>Aquaculture research</title><description>Improving the lipid composition of feed‐rotifers enhances the survival and growth rates of juvenile fish in aquaculture, but monitoring enrichment profiles using gas chromatography (GC) is slow, labour‐intensive and requires expensive instrumentation. Here, we describe the potential of Raman spectroscopy as an alternative, more rapid tool for quantitation of rotifer fatty acid composition in an aquaculture setting. A compositionally diverse sample set was prepared by periodically subsampling rotifers undergoing enrichment using three different feeding regimens. Sampled rotifers were freeze‐dried and their fatty acid content and composition was measured by GC–MS (mass spectrometry). Raman spectra (1064 nm excitation) were acquired with two instruments: a state‐of‐the‐art Fourier transform (FT)‐Raman spectrometer equipped with a liquid nitrogen‐cooled Germanium detector; and a smaller, portable spectrometer equipped with an InGaAs detector. Fatty acid reference data acquired by GC–MS were related to structured variance in each Raman spectral data set using partial least squares regression. The resultant models could accurately quantitate total fatty acids (TFA) and total polyunsaturated fatty acids (PUFA) using both FT‐Raman spectra (Root Mean Square Error [RMSEV] = 5.0 mg g−1 TFA and 6.1 mg g−1 PUFA) and spectra generated using the portable instrument (RMSEV = 4.2 mg g−1 TFA and 5.3 mg g−1 PUFA). Analysis times with the portable instrument were approximately 3 min, compared to 16 min with the FT‐Raman system. Portable Raman spectroscopy may be a useful tool for high throughput screening of rotifer lipid composition when testing and optimizing enrichment protocols and developing microdiets for aquaculture species.</description><subject>Analytical methods</subject><subject>Aquaculture</subject><subject>Biochemical composition</subject><subject>Chromatography</subject><subject>Composition</subject><subject>Data acquisition</subject><subject>Enrichment</subject><subject>Excitation spectra</subject><subject>Fatty acid composition</subject><subject>Fatty acids</subject><subject>Feed composition</subject><subject>Fish</subject><subject>Fish culture</subject><subject>Fourier transforms</subject><subject>Gas chromatography</subject><subject>Germanium</subject><subject>Growth rate</subject><subject>High-throughput screening</subject><subject>Instrumentation</subject><subject>Instruments</subject><subject>Juveniles</subject><subject>Labour</subject><subject>Least squares method</subject><subject>Lipid composition</subject><subject>Lipids</subject><subject>Liquid nitrogen</subject><subject>live feed</subject><subject>Marine invertebrates</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Monitoring instruments</subject><subject>Polyculture (aquaculture)</subject><subject>Polyunsaturated fatty acids</subject><subject>Portability</subject><subject>Quantitation</subject><subject>Raman spectra</subject><subject>Raman spectroscopy</subject><subject>Regression analysis</subject><subject>Rotifera</subject><subject>rotifers</subject><subject>Spectra</subject><subject>Spectroscopy</subject><subject>Survival</subject><issn>1355-557X</issn><issn>1365-2109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kEtLAzEQgIMoWKsH_0HAiz1sm8dmd3OspT6gIBQFD0LI5oEp291tkiL7701dr85lBuabBx8AtxjNcYqF9GaOC0zQGZhgWrCMYMTPTzVjGWPlxyW4CmGHEM4RxRPwuZW90_BwlG10UUbXtbCz0Bqjoe-is8bD-wcv1VfqHAPsG6cS1bgwg1bGOECpnA6wHuBW7mULQ29U9F1QXT9cgwsrm2Bu_vIUvD-u31bP2eb16WW13GSKcIIyK3le5IaZnBOuq6rQ1lBVYKsUL4nBXDJW1SVTqi55RZnSpqhrW3KJkdLa0Cm4G_f2vjscTYhi1x19m04KUtKS0iInPFGzkVLpveCNFb13e-kHgZE4yRNJnviVl9jFyH67xgz_g2K5XY8TPyyRcdo</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Killeen, Daniel P.</creator><creator>Rooney, Jeremy S.</creator><creator>Card, Asli</creator><creator>Hegarty, Liam B.</creator><creator>Fantham, Warren W.</creator><creator>Gordon, Keith C.</creator><creator>Moran, Damian</creator><general>Hindawi Limited</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>202212</creationdate><title>Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy</title><author>Killeen, Daniel P. ; Rooney, Jeremy S. ; Card, Asli ; Hegarty, Liam B. ; Fantham, Warren W. ; Gordon, Keith C. ; Moran, Damian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2920-fa9464e5e4929d886dfe3c61fcc972e19a558b75ccb79835cde6bbf79a10cdde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical methods</topic><topic>Aquaculture</topic><topic>Biochemical composition</topic><topic>Chromatography</topic><topic>Composition</topic><topic>Data acquisition</topic><topic>Enrichment</topic><topic>Excitation spectra</topic><topic>Fatty acid composition</topic><topic>Fatty acids</topic><topic>Feed composition</topic><topic>Fish</topic><topic>Fish culture</topic><topic>Fourier transforms</topic><topic>Gas chromatography</topic><topic>Germanium</topic><topic>Growth rate</topic><topic>High-throughput screening</topic><topic>Instrumentation</topic><topic>Instruments</topic><topic>Juveniles</topic><topic>Labour</topic><topic>Least squares method</topic><topic>Lipid composition</topic><topic>Lipids</topic><topic>Liquid nitrogen</topic><topic>live feed</topic><topic>Marine invertebrates</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Monitoring instruments</topic><topic>Polyculture (aquaculture)</topic><topic>Polyunsaturated fatty acids</topic><topic>Portability</topic><topic>Quantitation</topic><topic>Raman spectra</topic><topic>Raman spectroscopy</topic><topic>Regression analysis</topic><topic>Rotifera</topic><topic>rotifers</topic><topic>Spectra</topic><topic>Spectroscopy</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Killeen, Daniel P.</creatorcontrib><creatorcontrib>Rooney, Jeremy S.</creatorcontrib><creatorcontrib>Card, Asli</creatorcontrib><creatorcontrib>Hegarty, Liam B.</creatorcontrib><creatorcontrib>Fantham, Warren W.</creatorcontrib><creatorcontrib>Gordon, Keith C.</creatorcontrib><creatorcontrib>Moran, Damian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Aquaculture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Killeen, Daniel P.</au><au>Rooney, Jeremy S.</au><au>Card, Asli</au><au>Hegarty, Liam B.</au><au>Fantham, Warren W.</au><au>Gordon, Keith C.</au><au>Moran, Damian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy</atitle><jtitle>Aquaculture research</jtitle><date>2022-12</date><risdate>2022</risdate><volume>53</volume><issue>18</issue><spage>6513</spage><epage>6523</epage><pages>6513-6523</pages><issn>1355-557X</issn><eissn>1365-2109</eissn><abstract>Improving the lipid composition of feed‐rotifers enhances the survival and growth rates of juvenile fish in aquaculture, but monitoring enrichment profiles using gas chromatography (GC) is slow, labour‐intensive and requires expensive instrumentation. Here, we describe the potential of Raman spectroscopy as an alternative, more rapid tool for quantitation of rotifer fatty acid composition in an aquaculture setting. A compositionally diverse sample set was prepared by periodically subsampling rotifers undergoing enrichment using three different feeding regimens. Sampled rotifers were freeze‐dried and their fatty acid content and composition was measured by GC–MS (mass spectrometry). Raman spectra (1064 nm excitation) were acquired with two instruments: a state‐of‐the‐art Fourier transform (FT)‐Raman spectrometer equipped with a liquid nitrogen‐cooled Germanium detector; and a smaller, portable spectrometer equipped with an InGaAs detector. Fatty acid reference data acquired by GC–MS were related to structured variance in each Raman spectral data set using partial least squares regression. The resultant models could accurately quantitate total fatty acids (TFA) and total polyunsaturated fatty acids (PUFA) using both FT‐Raman spectra (Root Mean Square Error [RMSEV] = 5.0 mg g−1 TFA and 6.1 mg g−1 PUFA) and spectra generated using the portable instrument (RMSEV = 4.2 mg g−1 TFA and 5.3 mg g−1 PUFA). Analysis times with the portable instrument were approximately 3 min, compared to 16 min with the FT‐Raman system. Portable Raman spectroscopy may be a useful tool for high throughput screening of rotifer lipid composition when testing and optimizing enrichment protocols and developing microdiets for aquaculture species.</abstract><cop>Oxford</cop><pub>Hindawi Limited</pub><doi>10.1111/are.16120</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1355-557X
ispartof Aquaculture research, 2022-12, Vol.53 (18), p.6513-6523
issn 1355-557X
1365-2109
language eng
recordid cdi_proquest_journals_2737336429
source Wiley Online Library Journals Frontfile Complete
subjects Analytical methods
Aquaculture
Biochemical composition
Chromatography
Composition
Data acquisition
Enrichment
Excitation spectra
Fatty acid composition
Fatty acids
Feed composition
Fish
Fish culture
Fourier transforms
Gas chromatography
Germanium
Growth rate
High-throughput screening
Instrumentation
Instruments
Juveniles
Labour
Least squares method
Lipid composition
Lipids
Liquid nitrogen
live feed
Marine invertebrates
Mass spectrometry
Mass spectroscopy
Monitoring instruments
Polyculture (aquaculture)
Polyunsaturated fatty acids
Portability
Quantitation
Raman spectra
Raman spectroscopy
Regression analysis
Rotifera
rotifers
Spectra
Spectroscopy
Survival
title Rapid quantitation of feed rotifer (Brachionus plicatilis) fatty acids by Raman spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20quantitation%20of%20feed%20rotifer%20(Brachionus%20plicatilis)%20fatty%20acids%20by%20Raman%20spectroscopy&rft.jtitle=Aquaculture%20research&rft.au=Killeen,%20Daniel%20P.&rft.date=2022-12&rft.volume=53&rft.issue=18&rft.spage=6513&rft.epage=6523&rft.pages=6513-6523&rft.issn=1355-557X&rft.eissn=1365-2109&rft_id=info:doi/10.1111/are.16120&rft_dat=%3Cproquest_cross%3E2737336429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737336429&rft_id=info:pmid/&rfr_iscdi=true