HDCR-katalysierte Hydrogenierung von CO2 zum H2-Carrier Ameisensäure

Hydrogen is considered as a game changer in decarbonization and combating global warming crisis. However, transport and storage of the gas are still challenging tasks. We describe here a unique enzyme from acetogenic bacteria that binds H2 to CO2, thereby producing the liquid organic hydrogen carrie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biospektrum 2022-11, Vol.28 (7), p.763-766
Hauptverfasser: Müller, Volker, Burger, Yvonne
Format: Artikel
Sprache:ger
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766
container_issue 7
container_start_page 763
container_title Biospektrum
container_volume 28
creator Müller, Volker
Burger, Yvonne
description Hydrogen is considered as a game changer in decarbonization and combating global warming crisis. However, transport and storage of the gas are still challenging tasks. We describe here a unique enzyme from acetogenic bacteria that binds H2 to CO2, thereby producing the liquid organic hydrogen carrier formic acid. A whole-cell-system enables high rates of formic acid production as well as hydrogen production from formic acid. Both processes can be timely separated in one operational unit to generate a biobattery to store and release hydrogen on demand.
doi_str_mv 10.1007/s12268-022-1854-y
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2737285538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737285538</sourcerecordid><originalsourceid>FETCH-LOGICAL-p71y-bdb2485c7ec3d05e69c2fd8eeedccd39a2bd11e009c3899588739b408568444c3</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhoMoWGofwNuC52gySTbJsazVFQoF6T3sbqaltd2tSVdYn8c38cWaUsG5DPPPxwx8hNxz9sgZ00-RA-SGMgDKjZJ0uCIjblKSg7TXZMSs1JSZXN-SSYxblkpYBlaOyKx8Lt7pR3WsdkPcYDhiVg4-dGts09S36-yra7NiAdl3v89KoEUVQtpk0z1uIrbx96cPeEduVtUu4uSvj8nyZbYsSjpfvL4V0zk9aD7Q2tcgjWo0NsIzhbltYOUNIvqm8cJWUHvOkTHbCGOtMkYLW0tmVG6klI0Yk4fL2UPoPnuMR7ft-tCmjw600GCUEiZRcKHiIWzaNYZ_ijN3FuYuwlwS5s7C3CBOnzJeKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737285538</pqid></control><display><type>article</type><title>HDCR-katalysierte Hydrogenierung von CO2 zum H2-Carrier Ameisensäure</title><source>Springer Nature - Complete Springer Journals</source><creator>Müller, Volker ; Burger, Yvonne</creator><creatorcontrib>Müller, Volker ; Burger, Yvonne</creatorcontrib><description>Hydrogen is considered as a game changer in decarbonization and combating global warming crisis. However, transport and storage of the gas are still challenging tasks. We describe here a unique enzyme from acetogenic bacteria that binds H2 to CO2, thereby producing the liquid organic hydrogen carrier formic acid. A whole-cell-system enables high rates of formic acid production as well as hydrogen production from formic acid. Both processes can be timely separated in one operational unit to generate a biobattery to store and release hydrogen on demand.</description><identifier>ISSN: 0947-0867</identifier><identifier>EISSN: 1868-6249</identifier><identifier>DOI: 10.1007/s12268-022-1854-y</identifier><language>ger</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acid production ; Biochemistry ; Biomedical and Life Sciences ; Biotechnologie ; Carbon dioxide ; Formic acid ; Global warming ; Human Genetics ; Hydrogen ; Life Sciences ; Microbiology ; Pharmacology/Toxicology</subject><ispartof>Biospektrum, 2022-11, Vol.28 (7), p.763-766</ispartof><rights>Die Autorinnen und Autoren 2022</rights><rights>Die Autorinnen und Autoren 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p71y-bdb2485c7ec3d05e69c2fd8eeedccd39a2bd11e009c3899588739b408568444c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12268-022-1854-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12268-022-1854-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Müller, Volker</creatorcontrib><creatorcontrib>Burger, Yvonne</creatorcontrib><title>HDCR-katalysierte Hydrogenierung von CO2 zum H2-Carrier Ameisensäure</title><title>Biospektrum</title><addtitle>Biospektrum</addtitle><description>Hydrogen is considered as a game changer in decarbonization and combating global warming crisis. However, transport and storage of the gas are still challenging tasks. We describe here a unique enzyme from acetogenic bacteria that binds H2 to CO2, thereby producing the liquid organic hydrogen carrier formic acid. A whole-cell-system enables high rates of formic acid production as well as hydrogen production from formic acid. Both processes can be timely separated in one operational unit to generate a biobattery to store and release hydrogen on demand.</description><subject>Acid production</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnologie</subject><subject>Carbon dioxide</subject><subject>Formic acid</subject><subject>Global warming</subject><subject>Human Genetics</subject><subject>Hydrogen</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Pharmacology/Toxicology</subject><issn>0947-0867</issn><issn>1868-6249</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkMFKAzEQhoMoWGofwNuC52gySTbJsazVFQoF6T3sbqaltd2tSVdYn8c38cWaUsG5DPPPxwx8hNxz9sgZ00-RA-SGMgDKjZJ0uCIjblKSg7TXZMSs1JSZXN-SSYxblkpYBlaOyKx8Lt7pR3WsdkPcYDhiVg4-dGts09S36-yra7NiAdl3v89KoEUVQtpk0z1uIrbx96cPeEduVtUu4uSvj8nyZbYsSjpfvL4V0zk9aD7Q2tcgjWo0NsIzhbltYOUNIvqm8cJWUHvOkTHbCGOtMkYLW0tmVG6klI0Yk4fL2UPoPnuMR7ft-tCmjw600GCUEiZRcKHiIWzaNYZ_ijN3FuYuwlwS5s7C3CBOnzJeKg</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Müller, Volker</creator><creator>Burger, Yvonne</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20221101</creationdate><title>HDCR-katalysierte Hydrogenierung von CO2 zum H2-Carrier Ameisensäure</title><author>Müller, Volker ; Burger, Yvonne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p71y-bdb2485c7ec3d05e69c2fd8eeedccd39a2bd11e009c3899588739b408568444c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>ger</language><creationdate>2022</creationdate><topic>Acid production</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnologie</topic><topic>Carbon dioxide</topic><topic>Formic acid</topic><topic>Global warming</topic><topic>Human Genetics</topic><topic>Hydrogen</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Pharmacology/Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller, Volker</creatorcontrib><creatorcontrib>Burger, Yvonne</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Biospektrum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller, Volker</au><au>Burger, Yvonne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HDCR-katalysierte Hydrogenierung von CO2 zum H2-Carrier Ameisensäure</atitle><jtitle>Biospektrum</jtitle><stitle>Biospektrum</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>28</volume><issue>7</issue><spage>763</spage><epage>766</epage><pages>763-766</pages><issn>0947-0867</issn><eissn>1868-6249</eissn><abstract>Hydrogen is considered as a game changer in decarbonization and combating global warming crisis. However, transport and storage of the gas are still challenging tasks. We describe here a unique enzyme from acetogenic bacteria that binds H2 to CO2, thereby producing the liquid organic hydrogen carrier formic acid. A whole-cell-system enables high rates of formic acid production as well as hydrogen production from formic acid. Both processes can be timely separated in one operational unit to generate a biobattery to store and release hydrogen on demand.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12268-022-1854-y</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-0867
ispartof Biospektrum, 2022-11, Vol.28 (7), p.763-766
issn 0947-0867
1868-6249
language ger
recordid cdi_proquest_journals_2737285538
source Springer Nature - Complete Springer Journals
subjects Acid production
Biochemistry
Biomedical and Life Sciences
Biotechnologie
Carbon dioxide
Formic acid
Global warming
Human Genetics
Hydrogen
Life Sciences
Microbiology
Pharmacology/Toxicology
title HDCR-katalysierte Hydrogenierung von CO2 zum H2-Carrier Ameisensäure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A53%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HDCR-katalysierte%20Hydrogenierung%20von%20CO2%20zum%20H2-Carrier%20Ameisens%C3%A4ure&rft.jtitle=Biospektrum&rft.au=M%C3%BCller,%20Volker&rft.date=2022-11-01&rft.volume=28&rft.issue=7&rft.spage=763&rft.epage=766&rft.pages=763-766&rft.issn=0947-0867&rft.eissn=1868-6249&rft_id=info:doi/10.1007/s12268-022-1854-y&rft_dat=%3Cproquest_sprin%3E2737285538%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737285538&rft_id=info:pmid/&rfr_iscdi=true