Tenable threats when Nash equilibrium is the norm
We formally assume that players in a game consider Nash Equilibrium (NE) the behavioral norm. In finite games of perfect information this leads to a refinement of NE: Faithful Nash Equilibrium (FNE). FNE is outcome equivalent to NE of the “trimmed” game, obtained by restricting the original tree to...
Gespeichert in:
Veröffentlicht in: | International journal of game theory 2022-11, Vol.51 (3-4), p.589-605 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 605 |
---|---|
container_issue | 3-4 |
container_start_page | 589 |
container_title | International journal of game theory |
container_volume | 51 |
creator | Forges, Françoise Sákovics, József |
description | We formally assume that players in a game consider Nash Equilibrium (NE) the behavioral norm. In finite games of perfect information this leads to a refinement of NE: Faithful Nash Equilibrium (FNE). FNE is outcome equivalent to NE of the “trimmed” game, obtained by restricting the original tree to its NE paths. Thus, it always exists but it need not be unique. Iterating the norm ensures uniqueness of outcome. FNE may violate backward induction when subgame perfection requires play according to the SPE following a deviation from it. We thus provide an alternative view of tenable threats in equilibrium analysis. |
doi_str_mv | 10.1007/s00182-022-00806-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737264482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737264482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-a2a49426d7c14b2653d7c7e9786689e8bcd5e4f28cd53a7be32817bf1df8a7ec3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJJM2kRylqhaKXeg7Z7azd0u62yS7ivzd1hd48DDMw7wc8QtxKuJcA9BABpMUcMA1YMLk6EyOpFeYSCc7FCAAhJyRzKa5i3EAygcWRkEtufLHlrFsH9l3MvtbcZG8-rjM-9PW2LkLd77I6JgFnTRt21-Ki8tvIN397LD6en5azeb54f3mdPS7yUoPuco9eTzWaFZVSF2gmKl3EU7LG2CnbolxNWFdo01aeClZoJRWVXFXWE5dqLO6G3H1oDz3Hzm3aPjSp0iEpQqO1xaTCQVWGNsbAlduHeufDt5PgjmjcgMYlNO4XjVPJlA0mLtumjieLRUMEJI-5apDE9Gw-OZza_wn-Acsjb6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737264482</pqid></control><display><type>article</type><title>Tenable threats when Nash equilibrium is the norm</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Forges, Françoise ; Sákovics, József</creator><creatorcontrib>Forges, Françoise ; Sákovics, József</creatorcontrib><description>We formally assume that players in a game consider Nash Equilibrium (NE) the behavioral norm. In finite games of perfect information this leads to a refinement of NE: Faithful Nash Equilibrium (FNE). FNE is outcome equivalent to NE of the “trimmed” game, obtained by restricting the original tree to its NE paths. Thus, it always exists but it need not be unique. Iterating the norm ensures uniqueness of outcome. FNE may violate backward induction when subgame perfection requires play according to the SPE following a deviation from it. We thus provide an alternative view of tenable threats in equilibrium analysis.</description><identifier>ISSN: 0020-7276</identifier><identifier>EISSN: 1432-1270</identifier><identifier>DOI: 10.1007/s00182-022-00806-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Behavioral/Experimental Economics ; Decision making ; Decision theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Equilibrium ; Equilibrium analysis ; Game Theory ; Games ; Hypotheses ; Induction ; Operations Research/Decision Theory ; Original Paper ; Perfectionism ; Social and Behav. Sciences ; Threat evaluation ; Threats ; Uniqueness</subject><ispartof>International journal of game theory, 2022-11, Vol.51 (3-4), p.589-605</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-a2a49426d7c14b2653d7c7e9786689e8bcd5e4f28cd53a7be32817bf1df8a7ec3</cites><orcidid>0000-0001-6777-7066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00182-022-00806-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00182-022-00806-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Forges, Françoise</creatorcontrib><creatorcontrib>Sákovics, József</creatorcontrib><title>Tenable threats when Nash equilibrium is the norm</title><title>International journal of game theory</title><addtitle>Int J Game Theory</addtitle><description>We formally assume that players in a game consider Nash Equilibrium (NE) the behavioral norm. In finite games of perfect information this leads to a refinement of NE: Faithful Nash Equilibrium (FNE). FNE is outcome equivalent to NE of the “trimmed” game, obtained by restricting the original tree to its NE paths. Thus, it always exists but it need not be unique. Iterating the norm ensures uniqueness of outcome. FNE may violate backward induction when subgame perfection requires play according to the SPE following a deviation from it. We thus provide an alternative view of tenable threats in equilibrium analysis.</description><subject>Behavioral/Experimental Economics</subject><subject>Decision making</subject><subject>Decision theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Equilibrium</subject><subject>Equilibrium analysis</subject><subject>Game Theory</subject><subject>Games</subject><subject>Hypotheses</subject><subject>Induction</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Perfectionism</subject><subject>Social and Behav. Sciences</subject><subject>Threat evaluation</subject><subject>Threats</subject><subject>Uniqueness</subject><issn>0020-7276</issn><issn>1432-1270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJJM2kRylqhaKXeg7Z7azd0u62yS7ivzd1hd48DDMw7wc8QtxKuJcA9BABpMUcMA1YMLk6EyOpFeYSCc7FCAAhJyRzKa5i3EAygcWRkEtufLHlrFsH9l3MvtbcZG8-rjM-9PW2LkLd77I6JgFnTRt21-Ki8tvIN397LD6en5azeb54f3mdPS7yUoPuco9eTzWaFZVSF2gmKl3EU7LG2CnbolxNWFdo01aeClZoJRWVXFXWE5dqLO6G3H1oDz3Hzm3aPjSp0iEpQqO1xaTCQVWGNsbAlduHeufDt5PgjmjcgMYlNO4XjVPJlA0mLtumjieLRUMEJI-5apDE9Gw-OZza_wn-Acsjb6Q</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Forges, Françoise</creator><creator>Sákovics, József</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6777-7066</orcidid></search><sort><creationdate>20221101</creationdate><title>Tenable threats when Nash equilibrium is the norm</title><author>Forges, Françoise ; Sákovics, József</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-a2a49426d7c14b2653d7c7e9786689e8bcd5e4f28cd53a7be32817bf1df8a7ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Behavioral/Experimental Economics</topic><topic>Decision making</topic><topic>Decision theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Equilibrium</topic><topic>Equilibrium analysis</topic><topic>Game Theory</topic><topic>Games</topic><topic>Hypotheses</topic><topic>Induction</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Perfectionism</topic><topic>Social and Behav. Sciences</topic><topic>Threat evaluation</topic><topic>Threats</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forges, Françoise</creatorcontrib><creatorcontrib>Sákovics, József</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of game theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forges, Françoise</au><au>Sákovics, József</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tenable threats when Nash equilibrium is the norm</atitle><jtitle>International journal of game theory</jtitle><stitle>Int J Game Theory</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>51</volume><issue>3-4</issue><spage>589</spage><epage>605</epage><pages>589-605</pages><issn>0020-7276</issn><eissn>1432-1270</eissn><abstract>We formally assume that players in a game consider Nash Equilibrium (NE) the behavioral norm. In finite games of perfect information this leads to a refinement of NE: Faithful Nash Equilibrium (FNE). FNE is outcome equivalent to NE of the “trimmed” game, obtained by restricting the original tree to its NE paths. Thus, it always exists but it need not be unique. Iterating the norm ensures uniqueness of outcome. FNE may violate backward induction when subgame perfection requires play according to the SPE following a deviation from it. We thus provide an alternative view of tenable threats in equilibrium analysis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00182-022-00806-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6777-7066</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7276 |
ispartof | International journal of game theory, 2022-11, Vol.51 (3-4), p.589-605 |
issn | 0020-7276 1432-1270 |
language | eng |
recordid | cdi_proquest_journals_2737264482 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Behavioral/Experimental Economics Decision making Decision theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Equilibrium Equilibrium analysis Game Theory Games Hypotheses Induction Operations Research/Decision Theory Original Paper Perfectionism Social and Behav. Sciences Threat evaluation Threats Uniqueness |
title | Tenable threats when Nash equilibrium is the norm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tenable%20threats%20when%20Nash%20equilibrium%20is%20the%20norm&rft.jtitle=International%20journal%20of%20game%20theory&rft.au=Forges,%20Fran%C3%A7oise&rft.date=2022-11-01&rft.volume=51&rft.issue=3-4&rft.spage=589&rft.epage=605&rft.pages=589-605&rft.issn=0020-7276&rft.eissn=1432-1270&rft_id=info:doi/10.1007/s00182-022-00806-3&rft_dat=%3Cproquest_cross%3E2737264482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737264482&rft_id=info:pmid/&rfr_iscdi=true |