Tenable threats when Nash equilibrium is the norm

We formally assume that players in a game consider Nash Equilibrium (NE) the behavioral norm. In finite games of perfect information this leads to a refinement of NE: Faithful Nash Equilibrium (FNE). FNE is outcome equivalent to NE of the “trimmed” game, obtained by restricting the original tree to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of game theory 2022-11, Vol.51 (3-4), p.589-605
Hauptverfasser: Forges, Françoise, Sákovics, József
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 605
container_issue 3-4
container_start_page 589
container_title International journal of game theory
container_volume 51
creator Forges, Françoise
Sákovics, József
description We formally assume that players in a game consider Nash Equilibrium (NE) the behavioral norm. In finite games of perfect information this leads to a refinement of NE: Faithful Nash Equilibrium (FNE). FNE is outcome equivalent to NE of the “trimmed” game, obtained by restricting the original tree to its NE paths. Thus, it always exists but it need not be unique. Iterating the norm ensures uniqueness of outcome. FNE may violate backward induction when subgame perfection requires play according to the SPE following a deviation from it. We thus provide an alternative view of tenable threats in equilibrium analysis.
doi_str_mv 10.1007/s00182-022-00806-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737264482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737264482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-a2a49426d7c14b2653d7c7e9786689e8bcd5e4f28cd53a7be32817bf1df8a7ec3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJJM2kRylqhaKXeg7Z7azd0u62yS7ivzd1hd48DDMw7wc8QtxKuJcA9BABpMUcMA1YMLk6EyOpFeYSCc7FCAAhJyRzKa5i3EAygcWRkEtufLHlrFsH9l3MvtbcZG8-rjM-9PW2LkLd77I6JgFnTRt21-Ki8tvIN397LD6en5azeb54f3mdPS7yUoPuco9eTzWaFZVSF2gmKl3EU7LG2CnbolxNWFdo01aeClZoJRWVXFXWE5dqLO6G3H1oDz3Hzm3aPjSp0iEpQqO1xaTCQVWGNsbAlduHeufDt5PgjmjcgMYlNO4XjVPJlA0mLtumjieLRUMEJI-5apDE9Gw-OZza_wn-Acsjb6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737264482</pqid></control><display><type>article</type><title>Tenable threats when Nash equilibrium is the norm</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Forges, Françoise ; Sákovics, József</creator><creatorcontrib>Forges, Françoise ; Sákovics, József</creatorcontrib><description>We formally assume that players in a game consider Nash Equilibrium (NE) the behavioral norm. In finite games of perfect information this leads to a refinement of NE: Faithful Nash Equilibrium (FNE). FNE is outcome equivalent to NE of the “trimmed” game, obtained by restricting the original tree to its NE paths. Thus, it always exists but it need not be unique. Iterating the norm ensures uniqueness of outcome. FNE may violate backward induction when subgame perfection requires play according to the SPE following a deviation from it. We thus provide an alternative view of tenable threats in equilibrium analysis.</description><identifier>ISSN: 0020-7276</identifier><identifier>EISSN: 1432-1270</identifier><identifier>DOI: 10.1007/s00182-022-00806-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Behavioral/Experimental Economics ; Decision making ; Decision theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Equilibrium ; Equilibrium analysis ; Game Theory ; Games ; Hypotheses ; Induction ; Operations Research/Decision Theory ; Original Paper ; Perfectionism ; Social and Behav. Sciences ; Threat evaluation ; Threats ; Uniqueness</subject><ispartof>International journal of game theory, 2022-11, Vol.51 (3-4), p.589-605</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c404t-a2a49426d7c14b2653d7c7e9786689e8bcd5e4f28cd53a7be32817bf1df8a7ec3</cites><orcidid>0000-0001-6777-7066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00182-022-00806-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00182-022-00806-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Forges, Françoise</creatorcontrib><creatorcontrib>Sákovics, József</creatorcontrib><title>Tenable threats when Nash equilibrium is the norm</title><title>International journal of game theory</title><addtitle>Int J Game Theory</addtitle><description>We formally assume that players in a game consider Nash Equilibrium (NE) the behavioral norm. In finite games of perfect information this leads to a refinement of NE: Faithful Nash Equilibrium (FNE). FNE is outcome equivalent to NE of the “trimmed” game, obtained by restricting the original tree to its NE paths. Thus, it always exists but it need not be unique. Iterating the norm ensures uniqueness of outcome. FNE may violate backward induction when subgame perfection requires play according to the SPE following a deviation from it. We thus provide an alternative view of tenable threats in equilibrium analysis.</description><subject>Behavioral/Experimental Economics</subject><subject>Decision making</subject><subject>Decision theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Equilibrium</subject><subject>Equilibrium analysis</subject><subject>Game Theory</subject><subject>Games</subject><subject>Hypotheses</subject><subject>Induction</subject><subject>Operations Research/Decision Theory</subject><subject>Original Paper</subject><subject>Perfectionism</subject><subject>Social and Behav. Sciences</subject><subject>Threat evaluation</subject><subject>Threats</subject><subject>Uniqueness</subject><issn>0020-7276</issn><issn>1432-1270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wNOC59XJJM2kRylqhaKXeg7Z7azd0u62yS7ivzd1hd48DDMw7wc8QtxKuJcA9BABpMUcMA1YMLk6EyOpFeYSCc7FCAAhJyRzKa5i3EAygcWRkEtufLHlrFsH9l3MvtbcZG8-rjM-9PW2LkLd77I6JgFnTRt21-Ki8tvIN397LD6en5azeb54f3mdPS7yUoPuco9eTzWaFZVSF2gmKl3EU7LG2CnbolxNWFdo01aeClZoJRWVXFXWE5dqLO6G3H1oDz3Hzm3aPjSp0iEpQqO1xaTCQVWGNsbAlduHeufDt5PgjmjcgMYlNO4XjVPJlA0mLtumjieLRUMEJI-5apDE9Gw-OZza_wn-Acsjb6Q</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Forges, Françoise</creator><creator>Sákovics, József</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-6777-7066</orcidid></search><sort><creationdate>20221101</creationdate><title>Tenable threats when Nash equilibrium is the norm</title><author>Forges, Françoise ; Sákovics, József</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-a2a49426d7c14b2653d7c7e9786689e8bcd5e4f28cd53a7be32817bf1df8a7ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Behavioral/Experimental Economics</topic><topic>Decision making</topic><topic>Decision theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Equilibrium</topic><topic>Equilibrium analysis</topic><topic>Game Theory</topic><topic>Games</topic><topic>Hypotheses</topic><topic>Induction</topic><topic>Operations Research/Decision Theory</topic><topic>Original Paper</topic><topic>Perfectionism</topic><topic>Social and Behav. Sciences</topic><topic>Threat evaluation</topic><topic>Threats</topic><topic>Uniqueness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forges, Françoise</creatorcontrib><creatorcontrib>Sákovics, József</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of game theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forges, Françoise</au><au>Sákovics, József</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tenable threats when Nash equilibrium is the norm</atitle><jtitle>International journal of game theory</jtitle><stitle>Int J Game Theory</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>51</volume><issue>3-4</issue><spage>589</spage><epage>605</epage><pages>589-605</pages><issn>0020-7276</issn><eissn>1432-1270</eissn><abstract>We formally assume that players in a game consider Nash Equilibrium (NE) the behavioral norm. In finite games of perfect information this leads to a refinement of NE: Faithful Nash Equilibrium (FNE). FNE is outcome equivalent to NE of the “trimmed” game, obtained by restricting the original tree to its NE paths. Thus, it always exists but it need not be unique. Iterating the norm ensures uniqueness of outcome. FNE may violate backward induction when subgame perfection requires play according to the SPE following a deviation from it. We thus provide an alternative view of tenable threats in equilibrium analysis.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00182-022-00806-3</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-6777-7066</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7276
ispartof International journal of game theory, 2022-11, Vol.51 (3-4), p.589-605
issn 0020-7276
1432-1270
language eng
recordid cdi_proquest_journals_2737264482
source SpringerNature Journals; EBSCOhost Business Source Complete
subjects Behavioral/Experimental Economics
Decision making
Decision theory
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Equilibrium
Equilibrium analysis
Game Theory
Games
Hypotheses
Induction
Operations Research/Decision Theory
Original Paper
Perfectionism
Social and Behav. Sciences
Threat evaluation
Threats
Uniqueness
title Tenable threats when Nash equilibrium is the norm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tenable%20threats%20when%20Nash%20equilibrium%20is%20the%20norm&rft.jtitle=International%20journal%20of%20game%20theory&rft.au=Forges,%20Fran%C3%A7oise&rft.date=2022-11-01&rft.volume=51&rft.issue=3-4&rft.spage=589&rft.epage=605&rft.pages=589-605&rft.issn=0020-7276&rft.eissn=1432-1270&rft_id=info:doi/10.1007/s00182-022-00806-3&rft_dat=%3Cproquest_cross%3E2737264482%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737264482&rft_id=info:pmid/&rfr_iscdi=true