Improving Orbital Uncertainty Realism Through Covariance Determination in GEO

The reliability of the uncertainty characterization, also known as uncertainty realism, is of the uttermost importance for Space Situational Awareness (SSA) services. Among the different sources of uncertainty related to the orbits of Resident Space Objects (RSOs), the uncertainty of dynamic models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the astronautical sciences 2022, Vol.69 (5), p.1394-1420
Hauptverfasser: Cano, Alejandro, Pastor, Alejandro, Fernández, Sergio, Míguez, Joaquín, Sanjurjo-Rivo, Manuel, Escobar, Diego
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1420
container_issue 5
container_start_page 1394
container_title The Journal of the astronautical sciences
container_volume 69
creator Cano, Alejandro
Pastor, Alejandro
Fernández, Sergio
Míguez, Joaquín
Sanjurjo-Rivo, Manuel
Escobar, Diego
description The reliability of the uncertainty characterization, also known as uncertainty realism, is of the uttermost importance for Space Situational Awareness (SSA) services. Among the different sources of uncertainty related to the orbits of Resident Space Objects (RSOs), the uncertainty of dynamic models is one of the most relevant ones, although it is not always included in orbit determination processes. A classical approach to account for these sources of uncertainty is the consider parameters theory, which consists in including parameters in the underlying dynamical models whose variance aims to represent the uncertainty of the system. However, realistic variances of these consider parameters are not known a-priori. This work presents a method to infer the variance of the consider parameters, based on the distribution of the Mahalanobis distance of the orbital differences between predicted and estimated orbits, which theoretically shall follow a χ 2 distribution under Gaussian assumption. This paper presents results in a simulated scenario focusing on Geostationary (GEO) regimes. The effectiveness and traceability of the uncertainty sources is assessed via covariance realism metrics.
doi_str_mv 10.1007/s40295-022-00343-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737134852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737134852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-881f0e8f0836931318a99407f0aba51175f01696bef872c16a6a0d7618f86d5e3</originalsourceid><addsrcrecordid>eNp9kMFOAjEQhhujiYi-gKcmnlc77W7bPRpEJMGQGDg3ZWmhhO1iuxB4e4troidPM5l8_8zkQ-geyCMQIp5iTmhZZITSjBCWs-x4gXoUzqNCwOWf_hrdxLhJEJASeuh9XO9Cc3B-hadh4Vq9xXNfmdBq59sT_jB662KNZ-vQ7FdrPGgOOjidCPxiWhNq53XrGo-dx6Ph9BZdWb2N5u6n9tH8dTgbvGWT6Wg8eJ5kFS1Zm0kJlhhpiWS8ZMBA6rLMibBEL3QBIApLgJd8YawUtAKuuSZLwUFayZeFYX300O1Nv3_uTWzVptkHn04qKpgAlsuCJop2VBWaGIOxahdcrcNJAVFnbarTppI29a1NHVOIdaGYYL8y4Xf1P6kvLAVvig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737134852</pqid></control><display><type>article</type><title>Improving Orbital Uncertainty Realism Through Covariance Determination in GEO</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cano, Alejandro ; Pastor, Alejandro ; Fernández, Sergio ; Míguez, Joaquín ; Sanjurjo-Rivo, Manuel ; Escobar, Diego</creator><creatorcontrib>Cano, Alejandro ; Pastor, Alejandro ; Fernández, Sergio ; Míguez, Joaquín ; Sanjurjo-Rivo, Manuel ; Escobar, Diego</creatorcontrib><description>The reliability of the uncertainty characterization, also known as uncertainty realism, is of the uttermost importance for Space Situational Awareness (SSA) services. Among the different sources of uncertainty related to the orbits of Resident Space Objects (RSOs), the uncertainty of dynamic models is one of the most relevant ones, although it is not always included in orbit determination processes. A classical approach to account for these sources of uncertainty is the consider parameters theory, which consists in including parameters in the underlying dynamical models whose variance aims to represent the uncertainty of the system. However, realistic variances of these consider parameters are not known a-priori. This work presents a method to infer the variance of the consider parameters, based on the distribution of the Mahalanobis distance of the orbital differences between predicted and estimated orbits, which theoretically shall follow a χ 2 distribution under Gaussian assumption. This paper presents results in a simulated scenario focusing on Geostationary (GEO) regimes. The effectiveness and traceability of the uncertainty sources is assessed via covariance realism metrics.</description><identifier>ISSN: 2195-0571</identifier><identifier>ISSN: 0021-9142</identifier><identifier>EISSN: 2195-0571</identifier><identifier>DOI: 10.1007/s40295-022-00343-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Maui Optical and Space Surveillance Technologies (AMOS 2021) ; Aerospace Technology and Astronautics ; Chi-square test ; Covariance ; Dynamic models ; Engineering ; Mathematical Applications in the Physical Sciences ; Normal distribution ; Orbit determination ; Orbits ; Original Article ; Parameters ; Realism ; Situational awareness ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Uncertainty ; Variance</subject><ispartof>The Journal of the astronautical sciences, 2022, Vol.69 (5), p.1394-1420</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-881f0e8f0836931318a99407f0aba51175f01696bef872c16a6a0d7618f86d5e3</citedby><cites>FETCH-LOGICAL-c293t-881f0e8f0836931318a99407f0aba51175f01696bef872c16a6a0d7618f86d5e3</cites><orcidid>0000-0003-4285-9182 ; 0000-0002-2282-2553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40295-022-00343-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40295-022-00343-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cano, Alejandro</creatorcontrib><creatorcontrib>Pastor, Alejandro</creatorcontrib><creatorcontrib>Fernández, Sergio</creatorcontrib><creatorcontrib>Míguez, Joaquín</creatorcontrib><creatorcontrib>Sanjurjo-Rivo, Manuel</creatorcontrib><creatorcontrib>Escobar, Diego</creatorcontrib><title>Improving Orbital Uncertainty Realism Through Covariance Determination in GEO</title><title>The Journal of the astronautical sciences</title><addtitle>J Astronaut Sci</addtitle><description>The reliability of the uncertainty characterization, also known as uncertainty realism, is of the uttermost importance for Space Situational Awareness (SSA) services. Among the different sources of uncertainty related to the orbits of Resident Space Objects (RSOs), the uncertainty of dynamic models is one of the most relevant ones, although it is not always included in orbit determination processes. A classical approach to account for these sources of uncertainty is the consider parameters theory, which consists in including parameters in the underlying dynamical models whose variance aims to represent the uncertainty of the system. However, realistic variances of these consider parameters are not known a-priori. This work presents a method to infer the variance of the consider parameters, based on the distribution of the Mahalanobis distance of the orbital differences between predicted and estimated orbits, which theoretically shall follow a χ 2 distribution under Gaussian assumption. This paper presents results in a simulated scenario focusing on Geostationary (GEO) regimes. The effectiveness and traceability of the uncertainty sources is assessed via covariance realism metrics.</description><subject>Advanced Maui Optical and Space Surveillance Technologies (AMOS 2021)</subject><subject>Aerospace Technology and Astronautics</subject><subject>Chi-square test</subject><subject>Covariance</subject><subject>Dynamic models</subject><subject>Engineering</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Normal distribution</subject><subject>Orbit determination</subject><subject>Orbits</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Realism</subject><subject>Situational awareness</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Uncertainty</subject><subject>Variance</subject><issn>2195-0571</issn><issn>0021-9142</issn><issn>2195-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFOAjEQhhujiYi-gKcmnlc77W7bPRpEJMGQGDg3ZWmhhO1iuxB4e4troidPM5l8_8zkQ-geyCMQIp5iTmhZZITSjBCWs-x4gXoUzqNCwOWf_hrdxLhJEJASeuh9XO9Cc3B-hadh4Vq9xXNfmdBq59sT_jB662KNZ-vQ7FdrPGgOOjidCPxiWhNq53XrGo-dx6Ph9BZdWb2N5u6n9tH8dTgbvGWT6Wg8eJ5kFS1Zm0kJlhhpiWS8ZMBA6rLMibBEL3QBIApLgJd8YawUtAKuuSZLwUFayZeFYX300O1Nv3_uTWzVptkHn04qKpgAlsuCJop2VBWaGIOxahdcrcNJAVFnbarTppI29a1NHVOIdaGYYL8y4Xf1P6kvLAVvig</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cano, Alejandro</creator><creator>Pastor, Alejandro</creator><creator>Fernández, Sergio</creator><creator>Míguez, Joaquín</creator><creator>Sanjurjo-Rivo, Manuel</creator><creator>Escobar, Diego</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4285-9182</orcidid><orcidid>https://orcid.org/0000-0002-2282-2553</orcidid></search><sort><creationdate>2022</creationdate><title>Improving Orbital Uncertainty Realism Through Covariance Determination in GEO</title><author>Cano, Alejandro ; Pastor, Alejandro ; Fernández, Sergio ; Míguez, Joaquín ; Sanjurjo-Rivo, Manuel ; Escobar, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-881f0e8f0836931318a99407f0aba51175f01696bef872c16a6a0d7618f86d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced Maui Optical and Space Surveillance Technologies (AMOS 2021)</topic><topic>Aerospace Technology and Astronautics</topic><topic>Chi-square test</topic><topic>Covariance</topic><topic>Dynamic models</topic><topic>Engineering</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Normal distribution</topic><topic>Orbit determination</topic><topic>Orbits</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Realism</topic><topic>Situational awareness</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Uncertainty</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cano, Alejandro</creatorcontrib><creatorcontrib>Pastor, Alejandro</creatorcontrib><creatorcontrib>Fernández, Sergio</creatorcontrib><creatorcontrib>Míguez, Joaquín</creatorcontrib><creatorcontrib>Sanjurjo-Rivo, Manuel</creatorcontrib><creatorcontrib>Escobar, Diego</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The Journal of the astronautical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cano, Alejandro</au><au>Pastor, Alejandro</au><au>Fernández, Sergio</au><au>Míguez, Joaquín</au><au>Sanjurjo-Rivo, Manuel</au><au>Escobar, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Orbital Uncertainty Realism Through Covariance Determination in GEO</atitle><jtitle>The Journal of the astronautical sciences</jtitle><stitle>J Astronaut Sci</stitle><date>2022</date><risdate>2022</risdate><volume>69</volume><issue>5</issue><spage>1394</spage><epage>1420</epage><pages>1394-1420</pages><issn>2195-0571</issn><issn>0021-9142</issn><eissn>2195-0571</eissn><abstract>The reliability of the uncertainty characterization, also known as uncertainty realism, is of the uttermost importance for Space Situational Awareness (SSA) services. Among the different sources of uncertainty related to the orbits of Resident Space Objects (RSOs), the uncertainty of dynamic models is one of the most relevant ones, although it is not always included in orbit determination processes. A classical approach to account for these sources of uncertainty is the consider parameters theory, which consists in including parameters in the underlying dynamical models whose variance aims to represent the uncertainty of the system. However, realistic variances of these consider parameters are not known a-priori. This work presents a method to infer the variance of the consider parameters, based on the distribution of the Mahalanobis distance of the orbital differences between predicted and estimated orbits, which theoretically shall follow a χ 2 distribution under Gaussian assumption. This paper presents results in a simulated scenario focusing on Geostationary (GEO) regimes. The effectiveness and traceability of the uncertainty sources is assessed via covariance realism metrics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40295-022-00343-x</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-4285-9182</orcidid><orcidid>https://orcid.org/0000-0002-2282-2553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2195-0571
ispartof The Journal of the astronautical sciences, 2022, Vol.69 (5), p.1394-1420
issn 2195-0571
0021-9142
2195-0571
language eng
recordid cdi_proquest_journals_2737134852
source SpringerLink Journals - AutoHoldings
subjects Advanced Maui Optical and Space Surveillance Technologies (AMOS 2021)
Aerospace Technology and Astronautics
Chi-square test
Covariance
Dynamic models
Engineering
Mathematical Applications in the Physical Sciences
Normal distribution
Orbit determination
Orbits
Original Article
Parameters
Realism
Situational awareness
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Uncertainty
Variance
title Improving Orbital Uncertainty Realism Through Covariance Determination in GEO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Orbital%20Uncertainty%20Realism%20Through%20Covariance%20Determination%20in%20GEO&rft.jtitle=The%20Journal%20of%20the%20astronautical%20sciences&rft.au=Cano,%20Alejandro&rft.date=2022&rft.volume=69&rft.issue=5&rft.spage=1394&rft.epage=1420&rft.pages=1394-1420&rft.issn=2195-0571&rft.eissn=2195-0571&rft_id=info:doi/10.1007/s40295-022-00343-x&rft_dat=%3Cproquest_cross%3E2737134852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737134852&rft_id=info:pmid/&rfr_iscdi=true