Improving Orbital Uncertainty Realism Through Covariance Determination in GEO
The reliability of the uncertainty characterization, also known as uncertainty realism, is of the uttermost importance for Space Situational Awareness (SSA) services. Among the different sources of uncertainty related to the orbits of Resident Space Objects (RSOs), the uncertainty of dynamic models...
Gespeichert in:
Veröffentlicht in: | The Journal of the astronautical sciences 2022, Vol.69 (5), p.1394-1420 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1420 |
---|---|
container_issue | 5 |
container_start_page | 1394 |
container_title | The Journal of the astronautical sciences |
container_volume | 69 |
creator | Cano, Alejandro Pastor, Alejandro Fernández, Sergio Míguez, Joaquín Sanjurjo-Rivo, Manuel Escobar, Diego |
description | The reliability of the uncertainty characterization, also known as uncertainty realism, is of the uttermost importance for Space Situational Awareness (SSA) services. Among the different sources of uncertainty related to the orbits of Resident Space Objects (RSOs), the uncertainty of dynamic models is one of the most relevant ones, although it is not always included in orbit determination processes. A classical approach to account for these sources of uncertainty is the consider parameters theory, which consists in including parameters in the underlying dynamical models whose variance aims to represent the uncertainty of the system. However, realistic variances of these consider parameters are not known a-priori. This work presents a method to infer the variance of the consider parameters, based on the distribution of the Mahalanobis distance of the orbital differences between predicted and estimated orbits, which theoretically shall follow a
χ
2
distribution under Gaussian assumption. This paper presents results in a simulated scenario focusing on Geostationary (GEO) regimes. The effectiveness and traceability of the uncertainty sources is assessed via covariance realism metrics. |
doi_str_mv | 10.1007/s40295-022-00343-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2737134852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737134852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-881f0e8f0836931318a99407f0aba51175f01696bef872c16a6a0d7618f86d5e3</originalsourceid><addsrcrecordid>eNp9kMFOAjEQhhujiYi-gKcmnlc77W7bPRpEJMGQGDg3ZWmhhO1iuxB4e4troidPM5l8_8zkQ-geyCMQIp5iTmhZZITSjBCWs-x4gXoUzqNCwOWf_hrdxLhJEJASeuh9XO9Cc3B-hadh4Vq9xXNfmdBq59sT_jB662KNZ-vQ7FdrPGgOOjidCPxiWhNq53XrGo-dx6Ph9BZdWb2N5u6n9tH8dTgbvGWT6Wg8eJ5kFS1Zm0kJlhhpiWS8ZMBA6rLMibBEL3QBIApLgJd8YawUtAKuuSZLwUFayZeFYX300O1Nv3_uTWzVptkHn04qKpgAlsuCJop2VBWaGIOxahdcrcNJAVFnbarTppI29a1NHVOIdaGYYL8y4Xf1P6kvLAVvig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2737134852</pqid></control><display><type>article</type><title>Improving Orbital Uncertainty Realism Through Covariance Determination in GEO</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cano, Alejandro ; Pastor, Alejandro ; Fernández, Sergio ; Míguez, Joaquín ; Sanjurjo-Rivo, Manuel ; Escobar, Diego</creator><creatorcontrib>Cano, Alejandro ; Pastor, Alejandro ; Fernández, Sergio ; Míguez, Joaquín ; Sanjurjo-Rivo, Manuel ; Escobar, Diego</creatorcontrib><description>The reliability of the uncertainty characterization, also known as uncertainty realism, is of the uttermost importance for Space Situational Awareness (SSA) services. Among the different sources of uncertainty related to the orbits of Resident Space Objects (RSOs), the uncertainty of dynamic models is one of the most relevant ones, although it is not always included in orbit determination processes. A classical approach to account for these sources of uncertainty is the consider parameters theory, which consists in including parameters in the underlying dynamical models whose variance aims to represent the uncertainty of the system. However, realistic variances of these consider parameters are not known a-priori. This work presents a method to infer the variance of the consider parameters, based on the distribution of the Mahalanobis distance of the orbital differences between predicted and estimated orbits, which theoretically shall follow a
χ
2
distribution under Gaussian assumption. This paper presents results in a simulated scenario focusing on Geostationary (GEO) regimes. The effectiveness and traceability of the uncertainty sources is assessed via covariance realism metrics.</description><identifier>ISSN: 2195-0571</identifier><identifier>ISSN: 0021-9142</identifier><identifier>EISSN: 2195-0571</identifier><identifier>DOI: 10.1007/s40295-022-00343-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Advanced Maui Optical and Space Surveillance Technologies (AMOS 2021) ; Aerospace Technology and Astronautics ; Chi-square test ; Covariance ; Dynamic models ; Engineering ; Mathematical Applications in the Physical Sciences ; Normal distribution ; Orbit determination ; Orbits ; Original Article ; Parameters ; Realism ; Situational awareness ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Uncertainty ; Variance</subject><ispartof>The Journal of the astronautical sciences, 2022, Vol.69 (5), p.1394-1420</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-881f0e8f0836931318a99407f0aba51175f01696bef872c16a6a0d7618f86d5e3</citedby><cites>FETCH-LOGICAL-c293t-881f0e8f0836931318a99407f0aba51175f01696bef872c16a6a0d7618f86d5e3</cites><orcidid>0000-0003-4285-9182 ; 0000-0002-2282-2553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40295-022-00343-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40295-022-00343-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cano, Alejandro</creatorcontrib><creatorcontrib>Pastor, Alejandro</creatorcontrib><creatorcontrib>Fernández, Sergio</creatorcontrib><creatorcontrib>Míguez, Joaquín</creatorcontrib><creatorcontrib>Sanjurjo-Rivo, Manuel</creatorcontrib><creatorcontrib>Escobar, Diego</creatorcontrib><title>Improving Orbital Uncertainty Realism Through Covariance Determination in GEO</title><title>The Journal of the astronautical sciences</title><addtitle>J Astronaut Sci</addtitle><description>The reliability of the uncertainty characterization, also known as uncertainty realism, is of the uttermost importance for Space Situational Awareness (SSA) services. Among the different sources of uncertainty related to the orbits of Resident Space Objects (RSOs), the uncertainty of dynamic models is one of the most relevant ones, although it is not always included in orbit determination processes. A classical approach to account for these sources of uncertainty is the consider parameters theory, which consists in including parameters in the underlying dynamical models whose variance aims to represent the uncertainty of the system. However, realistic variances of these consider parameters are not known a-priori. This work presents a method to infer the variance of the consider parameters, based on the distribution of the Mahalanobis distance of the orbital differences between predicted and estimated orbits, which theoretically shall follow a
χ
2
distribution under Gaussian assumption. This paper presents results in a simulated scenario focusing on Geostationary (GEO) regimes. The effectiveness and traceability of the uncertainty sources is assessed via covariance realism metrics.</description><subject>Advanced Maui Optical and Space Surveillance Technologies (AMOS 2021)</subject><subject>Aerospace Technology and Astronautics</subject><subject>Chi-square test</subject><subject>Covariance</subject><subject>Dynamic models</subject><subject>Engineering</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Normal distribution</subject><subject>Orbit determination</subject><subject>Orbits</subject><subject>Original Article</subject><subject>Parameters</subject><subject>Realism</subject><subject>Situational awareness</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Uncertainty</subject><subject>Variance</subject><issn>2195-0571</issn><issn>0021-9142</issn><issn>2195-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFOAjEQhhujiYi-gKcmnlc77W7bPRpEJMGQGDg3ZWmhhO1iuxB4e4troidPM5l8_8zkQ-geyCMQIp5iTmhZZITSjBCWs-x4gXoUzqNCwOWf_hrdxLhJEJASeuh9XO9Cc3B-hadh4Vq9xXNfmdBq59sT_jB662KNZ-vQ7FdrPGgOOjidCPxiWhNq53XrGo-dx6Ph9BZdWb2N5u6n9tH8dTgbvGWT6Wg8eJ5kFS1Zm0kJlhhpiWS8ZMBA6rLMibBEL3QBIApLgJd8YawUtAKuuSZLwUFayZeFYX300O1Nv3_uTWzVptkHn04qKpgAlsuCJop2VBWaGIOxahdcrcNJAVFnbarTppI29a1NHVOIdaGYYL8y4Xf1P6kvLAVvig</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Cano, Alejandro</creator><creator>Pastor, Alejandro</creator><creator>Fernández, Sergio</creator><creator>Míguez, Joaquín</creator><creator>Sanjurjo-Rivo, Manuel</creator><creator>Escobar, Diego</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4285-9182</orcidid><orcidid>https://orcid.org/0000-0002-2282-2553</orcidid></search><sort><creationdate>2022</creationdate><title>Improving Orbital Uncertainty Realism Through Covariance Determination in GEO</title><author>Cano, Alejandro ; Pastor, Alejandro ; Fernández, Sergio ; Míguez, Joaquín ; Sanjurjo-Rivo, Manuel ; Escobar, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-881f0e8f0836931318a99407f0aba51175f01696bef872c16a6a0d7618f86d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Advanced Maui Optical and Space Surveillance Technologies (AMOS 2021)</topic><topic>Aerospace Technology and Astronautics</topic><topic>Chi-square test</topic><topic>Covariance</topic><topic>Dynamic models</topic><topic>Engineering</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Normal distribution</topic><topic>Orbit determination</topic><topic>Orbits</topic><topic>Original Article</topic><topic>Parameters</topic><topic>Realism</topic><topic>Situational awareness</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Uncertainty</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cano, Alejandro</creatorcontrib><creatorcontrib>Pastor, Alejandro</creatorcontrib><creatorcontrib>Fernández, Sergio</creatorcontrib><creatorcontrib>Míguez, Joaquín</creatorcontrib><creatorcontrib>Sanjurjo-Rivo, Manuel</creatorcontrib><creatorcontrib>Escobar, Diego</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>The Journal of the astronautical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cano, Alejandro</au><au>Pastor, Alejandro</au><au>Fernández, Sergio</au><au>Míguez, Joaquín</au><au>Sanjurjo-Rivo, Manuel</au><au>Escobar, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Orbital Uncertainty Realism Through Covariance Determination in GEO</atitle><jtitle>The Journal of the astronautical sciences</jtitle><stitle>J Astronaut Sci</stitle><date>2022</date><risdate>2022</risdate><volume>69</volume><issue>5</issue><spage>1394</spage><epage>1420</epage><pages>1394-1420</pages><issn>2195-0571</issn><issn>0021-9142</issn><eissn>2195-0571</eissn><abstract>The reliability of the uncertainty characterization, also known as uncertainty realism, is of the uttermost importance for Space Situational Awareness (SSA) services. Among the different sources of uncertainty related to the orbits of Resident Space Objects (RSOs), the uncertainty of dynamic models is one of the most relevant ones, although it is not always included in orbit determination processes. A classical approach to account for these sources of uncertainty is the consider parameters theory, which consists in including parameters in the underlying dynamical models whose variance aims to represent the uncertainty of the system. However, realistic variances of these consider parameters are not known a-priori. This work presents a method to infer the variance of the consider parameters, based on the distribution of the Mahalanobis distance of the orbital differences between predicted and estimated orbits, which theoretically shall follow a
χ
2
distribution under Gaussian assumption. This paper presents results in a simulated scenario focusing on Geostationary (GEO) regimes. The effectiveness and traceability of the uncertainty sources is assessed via covariance realism metrics.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40295-022-00343-x</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-4285-9182</orcidid><orcidid>https://orcid.org/0000-0002-2282-2553</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-0571 |
ispartof | The Journal of the astronautical sciences, 2022, Vol.69 (5), p.1394-1420 |
issn | 2195-0571 0021-9142 2195-0571 |
language | eng |
recordid | cdi_proquest_journals_2737134852 |
source | SpringerLink Journals - AutoHoldings |
subjects | Advanced Maui Optical and Space Surveillance Technologies (AMOS 2021) Aerospace Technology and Astronautics Chi-square test Covariance Dynamic models Engineering Mathematical Applications in the Physical Sciences Normal distribution Orbit determination Orbits Original Article Parameters Realism Situational awareness Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Uncertainty Variance |
title | Improving Orbital Uncertainty Realism Through Covariance Determination in GEO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A18%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Orbital%20Uncertainty%20Realism%20Through%20Covariance%20Determination%20in%20GEO&rft.jtitle=The%20Journal%20of%20the%20astronautical%20sciences&rft.au=Cano,%20Alejandro&rft.date=2022&rft.volume=69&rft.issue=5&rft.spage=1394&rft.epage=1420&rft.pages=1394-1420&rft.issn=2195-0571&rft.eissn=2195-0571&rft_id=info:doi/10.1007/s40295-022-00343-x&rft_dat=%3Cproquest_cross%3E2737134852%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2737134852&rft_id=info:pmid/&rfr_iscdi=true |