GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-distribution Generalization Perspective

Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase. However, the out-of-distribution (OOD) generalization problem remains a challenge in many NLP tasks, limi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Yang, Linyi, Zhang, Shuibai, Qin, Libo, Li, Yafu, Wang, Yidong, Liu, Hanmeng, Wang, Jindong, Xie, Xing, Zhang, Yue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yang, Linyi
Zhang, Shuibai
Qin, Libo
Li, Yafu
Wang, Yidong
Liu, Hanmeng
Wang, Jindong
Xie, Xing
Zhang, Yue
description Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase. However, the out-of-distribution (OOD) generalization problem remains a challenge in many NLP tasks, limiting the real-world deployment of these methods. This paper presents the first attempt at creating a unified benchmark named GLUE-X for evaluating OOD robustness in NLP models, highlighting the importance of OOD robustness and providing insights on how to measure the robustness of a model and how to improve it. The benchmark includes 13 publicly available datasets for OOD testing, and evaluations are conducted on 8 classic NLP tasks over 21 popularly used PLMs, including GPT-3 and GPT-3.5. Our findings confirm the need for improved OOD accuracy in NLP tasks, as significant performance degradation was observed in all settings compared to in-distribution (ID) accuracy.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2736932722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736932722</sourcerecordid><originalsourceid>FETCH-proquest_journals_27369327223</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgKOo_BFwH6o226laqLnwtLLgrV3tbIjXRPFz49VbxA1wNwzkzLdYFKUdiOgbosIFz1yiKIE5gMpFdZlabLBWnOU-fWAf0Sld8hz5YrPkGdRWwIp7pgqzzqIsP3pqCasdLa24cNd8HL0wpCuW8VefgldF8RZqaB_XCbz006ztdvHpSn7VLrB0Nftljw2V6XKzF3ZpHIOfzqwlWNyiHRMYzCQmA_M96A00jSos</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736932722</pqid></control><display><type>article</type><title>GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-distribution Generalization Perspective</title><source>Freely Accessible Journals</source><creator>Yang, Linyi ; Zhang, Shuibai ; Qin, Libo ; Li, Yafu ; Wang, Yidong ; Liu, Hanmeng ; Wang, Jindong ; Xie, Xing ; Zhang, Yue</creator><creatorcontrib>Yang, Linyi ; Zhang, Shuibai ; Qin, Libo ; Li, Yafu ; Wang, Yidong ; Liu, Hanmeng ; Wang, Jindong ; Xie, Xing ; Zhang, Yue</creatorcontrib><description>Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase. However, the out-of-distribution (OOD) generalization problem remains a challenge in many NLP tasks, limiting the real-world deployment of these methods. This paper presents the first attempt at creating a unified benchmark named GLUE-X for evaluating OOD robustness in NLP models, highlighting the importance of OOD robustness and providing insights on how to measure the robustness of a model and how to improve it. The benchmark includes 13 publicly available datasets for OOD testing, and evaluations are conducted on 8 classic NLP tasks over 21 popularly used PLMs, including GPT-3 and GPT-3.5. Our findings confirm the need for improved OOD accuracy in NLP tasks, as significant performance degradation was observed in all settings compared to in-distribution (ID) accuracy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Accuracy ; Ill posed problems ; Natural language ; Natural language processing ; Robustness ; Training</subject><ispartof>arXiv.org, 2023-05</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Yang, Linyi</creatorcontrib><creatorcontrib>Zhang, Shuibai</creatorcontrib><creatorcontrib>Qin, Libo</creatorcontrib><creatorcontrib>Li, Yafu</creatorcontrib><creatorcontrib>Wang, Yidong</creatorcontrib><creatorcontrib>Liu, Hanmeng</creatorcontrib><creatorcontrib>Wang, Jindong</creatorcontrib><creatorcontrib>Xie, Xing</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><title>GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-distribution Generalization Perspective</title><title>arXiv.org</title><description>Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase. However, the out-of-distribution (OOD) generalization problem remains a challenge in many NLP tasks, limiting the real-world deployment of these methods. This paper presents the first attempt at creating a unified benchmark named GLUE-X for evaluating OOD robustness in NLP models, highlighting the importance of OOD robustness and providing insights on how to measure the robustness of a model and how to improve it. The benchmark includes 13 publicly available datasets for OOD testing, and evaluations are conducted on 8 classic NLP tasks over 21 popularly used PLMs, including GPT-3 and GPT-3.5. Our findings confirm the need for improved OOD accuracy in NLP tasks, as significant performance degradation was observed in all settings compared to in-distribution (ID) accuracy.</description><subject>Accuracy</subject><subject>Ill posed problems</subject><subject>Natural language</subject><subject>Natural language processing</subject><subject>Robustness</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAURIMgKOo_BFwH6o226laqLnwtLLgrV3tbIjXRPFz49VbxA1wNwzkzLdYFKUdiOgbosIFz1yiKIE5gMpFdZlabLBWnOU-fWAf0Sld8hz5YrPkGdRWwIp7pgqzzqIsP3pqCasdLa24cNd8HL0wpCuW8VefgldF8RZqaB_XCbz006ztdvHpSn7VLrB0Nftljw2V6XKzF3ZpHIOfzqwlWNyiHRMYzCQmA_M96A00jSos</recordid><startdate>20230522</startdate><enddate>20230522</enddate><creator>Yang, Linyi</creator><creator>Zhang, Shuibai</creator><creator>Qin, Libo</creator><creator>Li, Yafu</creator><creator>Wang, Yidong</creator><creator>Liu, Hanmeng</creator><creator>Wang, Jindong</creator><creator>Xie, Xing</creator><creator>Zhang, Yue</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230522</creationdate><title>GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-distribution Generalization Perspective</title><author>Yang, Linyi ; Zhang, Shuibai ; Qin, Libo ; Li, Yafu ; Wang, Yidong ; Liu, Hanmeng ; Wang, Jindong ; Xie, Xing ; Zhang, Yue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27369327223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Ill posed problems</topic><topic>Natural language</topic><topic>Natural language processing</topic><topic>Robustness</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Linyi</creatorcontrib><creatorcontrib>Zhang, Shuibai</creatorcontrib><creatorcontrib>Qin, Libo</creatorcontrib><creatorcontrib>Li, Yafu</creatorcontrib><creatorcontrib>Wang, Yidong</creatorcontrib><creatorcontrib>Liu, Hanmeng</creatorcontrib><creatorcontrib>Wang, Jindong</creatorcontrib><creatorcontrib>Xie, Xing</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Linyi</au><au>Zhang, Shuibai</au><au>Qin, Libo</au><au>Li, Yafu</au><au>Wang, Yidong</au><au>Liu, Hanmeng</au><au>Wang, Jindong</au><au>Xie, Xing</au><au>Zhang, Yue</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-distribution Generalization Perspective</atitle><jtitle>arXiv.org</jtitle><date>2023-05-22</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Pre-trained language models (PLMs) are known to improve the generalization performance of natural language understanding models by leveraging large amounts of data during the pre-training phase. However, the out-of-distribution (OOD) generalization problem remains a challenge in many NLP tasks, limiting the real-world deployment of these methods. This paper presents the first attempt at creating a unified benchmark named GLUE-X for evaluating OOD robustness in NLP models, highlighting the importance of OOD robustness and providing insights on how to measure the robustness of a model and how to improve it. The benchmark includes 13 publicly available datasets for OOD testing, and evaluations are conducted on 8 classic NLP tasks over 21 popularly used PLMs, including GPT-3 and GPT-3.5. Our findings confirm the need for improved OOD accuracy in NLP tasks, as significant performance degradation was observed in all settings compared to in-distribution (ID) accuracy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2736932722
source Freely Accessible Journals
subjects Accuracy
Ill posed problems
Natural language
Natural language processing
Robustness
Training
title GLUE-X: Evaluating Natural Language Understanding Models from an Out-of-distribution Generalization Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=GLUE-X:%20Evaluating%20Natural%20Language%20Understanding%20Models%20from%20an%20Out-of-distribution%20Generalization%20Perspective&rft.jtitle=arXiv.org&rft.au=Yang,%20Linyi&rft.date=2023-05-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2736932722%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736932722&rft_id=info:pmid/&rfr_iscdi=true