Billiards in ellipses revisited
We prove some recent experimental observations of Dan Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the 1-parameter family of such polygons (that exist due to the Poncelet porism). In our proof...
Gespeichert in:
Veröffentlicht in: | European journal of mathematics 2022-12, Vol.8 (4), p.1313-1327 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1327 |
---|---|
container_issue | 4 |
container_start_page | 1313 |
container_title | European journal of mathematics |
container_volume | 8 |
creator | Akopyan, Arseniy Schwartz, Richard Tabachnikov, Serge |
description | We prove some recent experimental observations of Dan Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the 1-parameter family of such polygons (that exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic methods. |
doi_str_mv | 10.1007/s40879-020-00426-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736746234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736746234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2be409fb2e3671242a3898cacccbbbf78ae862697c78d8a6a807e01ad0ad48e63</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOIzzB9xYcB29eZjHUgcdhQE3Cu5Cmt5KpLY16Qj-e6MV3bm6Z3G-c-Ej5JjBGQPQ51mC0ZYCBwoguaJ2jyw4s5Yqrcz-b754OiSrnGMNgnElBJMLcnIVuy761OQq9hWWPGbMVcL3mOOEzRE5aH2XcfVzl-Tx5vphfUu395u79eWWBsHsRHmNEmxbcxRKMy65F8aa4EMIdV232ng0iiurgzaN8cob0AjMN-AbaVCJJTmdd8c0vO0wT-5l2KW-vHRcl02puJClxedWSEPOCVs3pvjq04dj4L5cuNmFKy7ctwtnCyRmKJdy_4zpb_of6hO_8GBt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736746234</pqid></control><display><type>article</type><title>Billiards in ellipses revisited</title><source>SpringerLink Journals - AutoHoldings</source><creator>Akopyan, Arseniy ; Schwartz, Richard ; Tabachnikov, Serge</creator><creatorcontrib>Akopyan, Arseniy ; Schwartz, Richard ; Tabachnikov, Serge</creatorcontrib><description>We prove some recent experimental observations of Dan Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the 1-parameter family of such polygons (that exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic methods.</description><identifier>ISSN: 2199-675X</identifier><identifier>EISSN: 2199-6768</identifier><identifier>DOI: 10.1007/s40879-020-00426-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebraic Geometry ; Angles (geometry) ; Ellipses ; Mathematics ; Mathematics and Statistics ; Polygons ; Research Article</subject><ispartof>European journal of mathematics, 2022-12, Vol.8 (4), p.1313-1327</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2be409fb2e3671242a3898cacccbbbf78ae862697c78d8a6a807e01ad0ad48e63</citedby><cites>FETCH-LOGICAL-c319t-2be409fb2e3671242a3898cacccbbbf78ae862697c78d8a6a807e01ad0ad48e63</cites><orcidid>0000-0001-5398-7820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40879-020-00426-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40879-020-00426-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Akopyan, Arseniy</creatorcontrib><creatorcontrib>Schwartz, Richard</creatorcontrib><creatorcontrib>Tabachnikov, Serge</creatorcontrib><title>Billiards in ellipses revisited</title><title>European journal of mathematics</title><addtitle>European Journal of Mathematics</addtitle><description>We prove some recent experimental observations of Dan Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the 1-parameter family of such polygons (that exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic methods.</description><subject>Algebraic Geometry</subject><subject>Angles (geometry)</subject><subject>Ellipses</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polygons</subject><subject>Research Article</subject><issn>2199-675X</issn><issn>2199-6768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOIzzB9xYcB29eZjHUgcdhQE3Cu5Cmt5KpLY16Qj-e6MV3bm6Z3G-c-Ej5JjBGQPQ51mC0ZYCBwoguaJ2jyw4s5Yqrcz-b754OiSrnGMNgnElBJMLcnIVuy761OQq9hWWPGbMVcL3mOOEzRE5aH2XcfVzl-Tx5vphfUu395u79eWWBsHsRHmNEmxbcxRKMy65F8aa4EMIdV232ng0iiurgzaN8cob0AjMN-AbaVCJJTmdd8c0vO0wT-5l2KW-vHRcl02puJClxedWSEPOCVs3pvjq04dj4L5cuNmFKy7ctwtnCyRmKJdy_4zpb_of6hO_8GBt</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Akopyan, Arseniy</creator><creator>Schwartz, Richard</creator><creator>Tabachnikov, Serge</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5398-7820</orcidid></search><sort><creationdate>20221201</creationdate><title>Billiards in ellipses revisited</title><author>Akopyan, Arseniy ; Schwartz, Richard ; Tabachnikov, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2be409fb2e3671242a3898cacccbbbf78ae862697c78d8a6a807e01ad0ad48e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebraic Geometry</topic><topic>Angles (geometry)</topic><topic>Ellipses</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polygons</topic><topic>Research Article</topic><toplevel>online_resources</toplevel><creatorcontrib>Akopyan, Arseniy</creatorcontrib><creatorcontrib>Schwartz, Richard</creatorcontrib><creatorcontrib>Tabachnikov, Serge</creatorcontrib><collection>CrossRef</collection><jtitle>European journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akopyan, Arseniy</au><au>Schwartz, Richard</au><au>Tabachnikov, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Billiards in ellipses revisited</atitle><jtitle>European journal of mathematics</jtitle><stitle>European Journal of Mathematics</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>8</volume><issue>4</issue><spage>1313</spage><epage>1327</epage><pages>1313-1327</pages><issn>2199-675X</issn><eissn>2199-6768</eissn><abstract>We prove some recent experimental observations of Dan Reznik concerning periodic billiard orbits in ellipses. For example, the sum of cosines of the angles of a periodic billiard polygon remains constant in the 1-parameter family of such polygons (that exist due to the Poncelet porism). In our proofs, we use geometric and complex analytic methods.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40879-020-00426-9</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5398-7820</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2199-675X |
ispartof | European journal of mathematics, 2022-12, Vol.8 (4), p.1313-1327 |
issn | 2199-675X 2199-6768 |
language | eng |
recordid | cdi_proquest_journals_2736746234 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebraic Geometry Angles (geometry) Ellipses Mathematics Mathematics and Statistics Polygons Research Article |
title | Billiards in ellipses revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T07%3A22%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Billiards%20in%20ellipses%20revisited&rft.jtitle=European%20journal%20of%20mathematics&rft.au=Akopyan,%20Arseniy&rft.date=2022-12-01&rft.volume=8&rft.issue=4&rft.spage=1313&rft.epage=1327&rft.pages=1313-1327&rft.issn=2199-675X&rft.eissn=2199-6768&rft_id=info:doi/10.1007/s40879-020-00426-9&rft_dat=%3Cproquest_cross%3E2736746234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736746234&rft_id=info:pmid/&rfr_iscdi=true |