Improved stretch factor of Delaunay triangulations of points in convex position

Let S be a set of n points in the plane, and let DT ( S ) be the planar graph of the Delaunay triangulation of S . For a pair of points a , b ∈ S , denote by | ab | the Euclidean distance between a and b . Denote by DT ( a ,  b ) the shortest path in DT ( S ) between a and b , and let | DT ( a ,  b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization 2023, Vol.45 (1), Article 3
Hauptverfasser: Tan, Xuehou, Sakthip, Charatsanyakul, Jiang, Bo, Liu, Shimao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of combinatorial optimization
container_volume 45
creator Tan, Xuehou
Sakthip, Charatsanyakul
Jiang, Bo
Liu, Shimao
description Let S be a set of n points in the plane, and let DT ( S ) be the planar graph of the Delaunay triangulation of S . For a pair of points a , b ∈ S , denote by | ab | the Euclidean distance between a and b . Denote by DT ( a ,  b ) the shortest path in DT ( S ) between a and b , and let | DT ( a ,  b )| be the total length of DT ( a ,  b ). Dobkin et al. were the first to show that DT ( S ) can be used to approximate the complete graph of S in the sense that the stretch factor | D T ( a , b ) | | a b | is upper bounded by ( ( 1 + 5 ) / 2 ) π ≈ 5.08 . Recently, Xia improved this factor to 1.998. Amani et al. have also shown that if the points of S are in convex position (i.e., they form the vertices of a convex polygon), then a planar graph with these vertices can be constructed such that its stretch factor is 1.88. In this paper, we prove that if the points of S are in convex position, then the stretch factor of DT ( S ) is less than 1.84, improving upon the previously known factors of Delaunay triangulations or planar graphs in the convex case.
doi_str_mv 10.1007/s10878-022-00940-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736742801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736742801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-613fa52ef7ebad224c3d46ed3c4047ce174a275c20793b577dc944eab3fea0473</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysZvdo9SvQqEXPYc0m9QtbVKTbNF_b-oK3jzNMO_zzgwvQtcUbimAvEsUGtkQYIwAtAKIOEETWklOWNPUp6XnDSN1C9U5ukhpA4WCSkzQcr7bx3CwHU452mzesdMmh4iDww92qwevv3COvfbrYatzH3w6SvvQ-5xw77EJ_mA_yyD1R_USnTm9Tfbqt07R29Pj6-yFLJbP89n9ghgmIZOacqcrZp20K90xJgzvRG07bgQIaSyVQjNZGQay5atKys60Qli94s7qQvApuhn3lu8_Bpuy2oQh-nJSMclrKVgDtFBspEwMKUXr1D72Ox2_FAV1DE6NwakSnPoJToli4qMpFdivbfxb_Y_rG5QicZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736742801</pqid></control><display><type>article</type><title>Improved stretch factor of Delaunay triangulations of points in convex position</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tan, Xuehou ; Sakthip, Charatsanyakul ; Jiang, Bo ; Liu, Shimao</creator><creatorcontrib>Tan, Xuehou ; Sakthip, Charatsanyakul ; Jiang, Bo ; Liu, Shimao</creatorcontrib><description>Let S be a set of n points in the plane, and let DT ( S ) be the planar graph of the Delaunay triangulation of S . For a pair of points a , b ∈ S , denote by | ab | the Euclidean distance between a and b . Denote by DT ( a ,  b ) the shortest path in DT ( S ) between a and b , and let | DT ( a ,  b )| be the total length of DT ( a ,  b ). Dobkin et al. were the first to show that DT ( S ) can be used to approximate the complete graph of S in the sense that the stretch factor | D T ( a , b ) | | a b | is upper bounded by ( ( 1 + 5 ) / 2 ) π ≈ 5.08 . Recently, Xia improved this factor to 1.998. Amani et al. have also shown that if the points of S are in convex position (i.e., they form the vertices of a convex polygon), then a planar graph with these vertices can be constructed such that its stretch factor is 1.88. In this paper, we prove that if the points of S are in convex position, then the stretch factor of DT ( S ) is less than 1.84, improving upon the previously known factors of Delaunay triangulations or planar graphs in the convex case.</description><identifier>ISSN: 1382-6905</identifier><identifier>EISSN: 1573-2886</identifier><identifier>DOI: 10.1007/s10878-022-00940-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Apexes ; Combinatorics ; Convex and Discrete Geometry ; Delaunay triangulation ; Euclidean geometry ; Graph theory ; Graphs ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Shortest-path problems ; Theory of Computation</subject><ispartof>Journal of combinatorial optimization, 2023, Vol.45 (1), Article 3</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-613fa52ef7ebad224c3d46ed3c4047ce174a275c20793b577dc944eab3fea0473</cites><orcidid>0000-0002-9828-9927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10878-022-00940-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10878-022-00940-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tan, Xuehou</creatorcontrib><creatorcontrib>Sakthip, Charatsanyakul</creatorcontrib><creatorcontrib>Jiang, Bo</creatorcontrib><creatorcontrib>Liu, Shimao</creatorcontrib><title>Improved stretch factor of Delaunay triangulations of points in convex position</title><title>Journal of combinatorial optimization</title><addtitle>J Comb Optim</addtitle><description>Let S be a set of n points in the plane, and let DT ( S ) be the planar graph of the Delaunay triangulation of S . For a pair of points a , b ∈ S , denote by | ab | the Euclidean distance between a and b . Denote by DT ( a ,  b ) the shortest path in DT ( S ) between a and b , and let | DT ( a ,  b )| be the total length of DT ( a ,  b ). Dobkin et al. were the first to show that DT ( S ) can be used to approximate the complete graph of S in the sense that the stretch factor | D T ( a , b ) | | a b | is upper bounded by ( ( 1 + 5 ) / 2 ) π ≈ 5.08 . Recently, Xia improved this factor to 1.998. Amani et al. have also shown that if the points of S are in convex position (i.e., they form the vertices of a convex polygon), then a planar graph with these vertices can be constructed such that its stretch factor is 1.88. In this paper, we prove that if the points of S are in convex position, then the stretch factor of DT ( S ) is less than 1.84, improving upon the previously known factors of Delaunay triangulations or planar graphs in the convex case.</description><subject>Apexes</subject><subject>Combinatorics</subject><subject>Convex and Discrete Geometry</subject><subject>Delaunay triangulation</subject><subject>Euclidean geometry</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Shortest-path problems</subject><subject>Theory of Computation</subject><issn>1382-6905</issn><issn>1573-2886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAc3TysZvdo9SvQqEXPYc0m9QtbVKTbNF_b-oK3jzNMO_zzgwvQtcUbimAvEsUGtkQYIwAtAKIOEETWklOWNPUp6XnDSN1C9U5ukhpA4WCSkzQcr7bx3CwHU452mzesdMmh4iDww92qwevv3COvfbrYatzH3w6SvvQ-5xw77EJ_mA_yyD1R_USnTm9Tfbqt07R29Pj6-yFLJbP89n9ghgmIZOacqcrZp20K90xJgzvRG07bgQIaSyVQjNZGQay5atKys60Qli94s7qQvApuhn3lu8_Bpuy2oQh-nJSMclrKVgDtFBspEwMKUXr1D72Ox2_FAV1DE6NwakSnPoJToli4qMpFdivbfxb_Y_rG5QicZY</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Tan, Xuehou</creator><creator>Sakthip, Charatsanyakul</creator><creator>Jiang, Bo</creator><creator>Liu, Shimao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9828-9927</orcidid></search><sort><creationdate>2023</creationdate><title>Improved stretch factor of Delaunay triangulations of points in convex position</title><author>Tan, Xuehou ; Sakthip, Charatsanyakul ; Jiang, Bo ; Liu, Shimao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-613fa52ef7ebad224c3d46ed3c4047ce174a275c20793b577dc944eab3fea0473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Combinatorics</topic><topic>Convex and Discrete Geometry</topic><topic>Delaunay triangulation</topic><topic>Euclidean geometry</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Shortest-path problems</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Xuehou</creatorcontrib><creatorcontrib>Sakthip, Charatsanyakul</creatorcontrib><creatorcontrib>Jiang, Bo</creatorcontrib><creatorcontrib>Liu, Shimao</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of combinatorial optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Xuehou</au><au>Sakthip, Charatsanyakul</au><au>Jiang, Bo</au><au>Liu, Shimao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved stretch factor of Delaunay triangulations of points in convex position</atitle><jtitle>Journal of combinatorial optimization</jtitle><stitle>J Comb Optim</stitle><date>2023</date><risdate>2023</risdate><volume>45</volume><issue>1</issue><artnum>3</artnum><issn>1382-6905</issn><eissn>1573-2886</eissn><abstract>Let S be a set of n points in the plane, and let DT ( S ) be the planar graph of the Delaunay triangulation of S . For a pair of points a , b ∈ S , denote by | ab | the Euclidean distance between a and b . Denote by DT ( a ,  b ) the shortest path in DT ( S ) between a and b , and let | DT ( a ,  b )| be the total length of DT ( a ,  b ). Dobkin et al. were the first to show that DT ( S ) can be used to approximate the complete graph of S in the sense that the stretch factor | D T ( a , b ) | | a b | is upper bounded by ( ( 1 + 5 ) / 2 ) π ≈ 5.08 . Recently, Xia improved this factor to 1.998. Amani et al. have also shown that if the points of S are in convex position (i.e., they form the vertices of a convex polygon), then a planar graph with these vertices can be constructed such that its stretch factor is 1.88. In this paper, we prove that if the points of S are in convex position, then the stretch factor of DT ( S ) is less than 1.84, improving upon the previously known factors of Delaunay triangulations or planar graphs in the convex case.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10878-022-00940-4</doi><orcidid>https://orcid.org/0000-0002-9828-9927</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-6905
ispartof Journal of combinatorial optimization, 2023, Vol.45 (1), Article 3
issn 1382-6905
1573-2886
language eng
recordid cdi_proquest_journals_2736742801
source SpringerLink Journals - AutoHoldings
subjects Apexes
Combinatorics
Convex and Discrete Geometry
Delaunay triangulation
Euclidean geometry
Graph theory
Graphs
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Shortest-path problems
Theory of Computation
title Improved stretch factor of Delaunay triangulations of points in convex position
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20stretch%20factor%20of%20Delaunay%20triangulations%20of%20points%20in%20convex%20position&rft.jtitle=Journal%20of%20combinatorial%20optimization&rft.au=Tan,%20Xuehou&rft.date=2023&rft.volume=45&rft.issue=1&rft.artnum=3&rft.issn=1382-6905&rft.eissn=1573-2886&rft_id=info:doi/10.1007/s10878-022-00940-4&rft_dat=%3Cproquest_cross%3E2736742801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736742801&rft_id=info:pmid/&rfr_iscdi=true