Nutritional inter‐dependencies and a carbazole‐dioxygenase are key elements of a bacterial consortium relying on a Sphingomonas for the degradation of the fungicide thiabendazole
Thiabendazole (TBZ), is a persistent fungicide/anthelminthic and a serious environmental threat. We previously enriched a TBZ‐degrading bacterial consortium and provided first evidence for a Sphingomonas involvement in TBZ transformation. Here, using a multi‐omic approach combined with DNA‐stable is...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2022-11, Vol.24 (11), p.5105-5122 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5122 |
---|---|
container_issue | 11 |
container_start_page | 5105 |
container_title | Environmental microbiology |
container_volume | 24 |
creator | Vasileiadis, Sotirios Perruchon, Chiara Scheer, Benjamin Adrian, Lorenz Steinbach, Nicole Trevisan, Marco Plaza‐Bolaños, Patricia Agüera, Ana Chatzinotas, Antonis Karpouzas, Dimitrios G. |
description | Thiabendazole (TBZ), is a persistent fungicide/anthelminthic and a serious environmental threat. We previously enriched a TBZ‐degrading bacterial consortium and provided first evidence for a Sphingomonas involvement in TBZ transformation. Here, using a multi‐omic approach combined with DNA‐stable isotope probing (SIP) we verified the key degrading role of Sphingomonas and identify potential microbial interactions governing consortium functioning. SIP and amplicon sequencing analysis of the heavy and light DNA fraction of cultures grown on 13C‐labelled versus 12C‐TBZ showed that 66% of the 13C‐labelled TBZ was assimilated by Sphingomonas. Metagenomic analysis retrieved 18 metagenome‐assembled genomes with the dominant belonging to Sphingomonas, Sinobacteriaceae, Bradyrhizobium, Filimonas and Hydrogenophaga. Meta‐transcriptomics/‐proteomics and non‐target mass spectrometry suggested TBZ transformation by Sphingomonas via initial cleavage by a carbazole dioxygenase (car) to thiazole‐4‐carboxamidine (terminal compound) and catechol or a cleaved benzyl ring derivative, further transformed through an ortho‐cleavage (cat) pathway. Microbial co‐occurrence and gene expression networks suggested strong interactions between Sphingomonas and a Hydrogenophaga. The latter activated its cobalamin biosynthetic pathway and Sphingomonas its cobalamin salvage pathway to satisfy its B12 auxotrophy. Our findings indicate microbial interactions aligning with the ‘black queen hypothesis’ where Sphingomonas (detoxifier, B12 recipient) and Hydrogenophaga (B12 producer, enjoying detoxification) act as both helpers and beneficiaries. |
doi_str_mv | 10.1111/1462-2920.16116 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736590475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736590475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3426-213c6364777df470e58f18f591cd8ca2a57ca782f19ac2f59627f898a8e66b153</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhS0Eoj-wZldZYn3b2EnsZFlVLa1UYAGsrYk9vnVJ7IudqA2rPkKfpg_Ek-D0lrvFG88cH38e-RDygRXHLK8TVgm-4i3PrWBMvCL7O-X1rmZ8jxykdFsUTJayeEv2ylq2bdU2--TpyzRGN7rgoafOjxj_PDwa3KA36LXDRMEbClRD7OB36HE5duF-XqOHhBQi0p84U-xxQD8mGmx2d6AzyWWkDj6FOLppoBH72fk1DT47vm1uch2G_G6iNkQ63iA1uI5gYJlm4SySnfzaaWcwdw66PNbzFO_IGwt9wvcv-yH5cXH-_exydf3109XZ6fVKlxUXK85KLUpRSSmNrWSBdWNZY-uWadNo4FBLDbLhlrWgedYFl7ZpG2hQiI7V5SH5uOVuYvg1YRrVbZhi_qukuCxF3RaVXFwnW5eOIaWIVm2iGyDOihVqyUktSaglFfWcU75x9MKdugHNzv8vmGyot4Y71-P8P546_3y1Bf8FEqiihA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736590475</pqid></control><display><type>article</type><title>Nutritional inter‐dependencies and a carbazole‐dioxygenase are key elements of a bacterial consortium relying on a Sphingomonas for the degradation of the fungicide thiabendazole</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vasileiadis, Sotirios ; Perruchon, Chiara ; Scheer, Benjamin ; Adrian, Lorenz ; Steinbach, Nicole ; Trevisan, Marco ; Plaza‐Bolaños, Patricia ; Agüera, Ana ; Chatzinotas, Antonis ; Karpouzas, Dimitrios G.</creator><creatorcontrib>Vasileiadis, Sotirios ; Perruchon, Chiara ; Scheer, Benjamin ; Adrian, Lorenz ; Steinbach, Nicole ; Trevisan, Marco ; Plaza‐Bolaños, Patricia ; Agüera, Ana ; Chatzinotas, Antonis ; Karpouzas, Dimitrios G.</creatorcontrib><description>Thiabendazole (TBZ), is a persistent fungicide/anthelminthic and a serious environmental threat. We previously enriched a TBZ‐degrading bacterial consortium and provided first evidence for a Sphingomonas involvement in TBZ transformation. Here, using a multi‐omic approach combined with DNA‐stable isotope probing (SIP) we verified the key degrading role of Sphingomonas and identify potential microbial interactions governing consortium functioning. SIP and amplicon sequencing analysis of the heavy and light DNA fraction of cultures grown on 13C‐labelled versus 12C‐TBZ showed that 66% of the 13C‐labelled TBZ was assimilated by Sphingomonas. Metagenomic analysis retrieved 18 metagenome‐assembled genomes with the dominant belonging to Sphingomonas, Sinobacteriaceae, Bradyrhizobium, Filimonas and Hydrogenophaga. Meta‐transcriptomics/‐proteomics and non‐target mass spectrometry suggested TBZ transformation by Sphingomonas via initial cleavage by a carbazole dioxygenase (car) to thiazole‐4‐carboxamidine (terminal compound) and catechol or a cleaved benzyl ring derivative, further transformed through an ortho‐cleavage (cat) pathway. Microbial co‐occurrence and gene expression networks suggested strong interactions between Sphingomonas and a Hydrogenophaga. The latter activated its cobalamin biosynthetic pathway and Sphingomonas its cobalamin salvage pathway to satisfy its B12 auxotrophy. Our findings indicate microbial interactions aligning with the ‘black queen hypothesis’ where Sphingomonas (detoxifier, B12 recipient) and Hydrogenophaga (B12 producer, enjoying detoxification) act as both helpers and beneficiaries.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.16116</identifier><identifier>PMID: 35799498</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Auxotrophy ; Bacteria - genetics ; Bacteria - metabolism ; Biodegradation ; Biodegradation, Environmental ; Carbazole ; Carbazoles ; Carbazoles - metabolism ; Catechol ; Cleavage ; Consortia ; Degradation ; Deoxyribonucleic acid ; Detoxification ; Dioxygenase ; Dioxygenases - metabolism ; DNA ; Environmental impact ; Fungicides ; Fungicides, Industrial - metabolism ; Gene expression ; Genetic transformation ; Genomes ; Hydrogenophaga ; Mass spectrometry ; Mass spectroscopy ; Metagenomics ; Microorganisms ; Proteomics ; Sequence analysis ; Sphingomonas ; Sphingomonas - genetics ; Sphingomonas - metabolism ; Stable isotopes ; Thiabendazole ; Thiabendazole - metabolism ; Transcriptomics ; Vitamin B 12 - metabolism ; Vitamin B12</subject><ispartof>Environmental microbiology, 2022-11, Vol.24 (11), p.5105-5122</ispartof><rights>2022 Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3426-213c6364777df470e58f18f591cd8ca2a57ca782f19ac2f59627f898a8e66b153</citedby><cites>FETCH-LOGICAL-c3426-213c6364777df470e58f18f591cd8ca2a57ca782f19ac2f59627f898a8e66b153</cites><orcidid>0000-0001-8205-0842 ; 0000-0002-2048-8192</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.16116$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.16116$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35799498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasileiadis, Sotirios</creatorcontrib><creatorcontrib>Perruchon, Chiara</creatorcontrib><creatorcontrib>Scheer, Benjamin</creatorcontrib><creatorcontrib>Adrian, Lorenz</creatorcontrib><creatorcontrib>Steinbach, Nicole</creatorcontrib><creatorcontrib>Trevisan, Marco</creatorcontrib><creatorcontrib>Plaza‐Bolaños, Patricia</creatorcontrib><creatorcontrib>Agüera, Ana</creatorcontrib><creatorcontrib>Chatzinotas, Antonis</creatorcontrib><creatorcontrib>Karpouzas, Dimitrios G.</creatorcontrib><title>Nutritional inter‐dependencies and a carbazole‐dioxygenase are key elements of a bacterial consortium relying on a Sphingomonas for the degradation of the fungicide thiabendazole</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Thiabendazole (TBZ), is a persistent fungicide/anthelminthic and a serious environmental threat. We previously enriched a TBZ‐degrading bacterial consortium and provided first evidence for a Sphingomonas involvement in TBZ transformation. Here, using a multi‐omic approach combined with DNA‐stable isotope probing (SIP) we verified the key degrading role of Sphingomonas and identify potential microbial interactions governing consortium functioning. SIP and amplicon sequencing analysis of the heavy and light DNA fraction of cultures grown on 13C‐labelled versus 12C‐TBZ showed that 66% of the 13C‐labelled TBZ was assimilated by Sphingomonas. Metagenomic analysis retrieved 18 metagenome‐assembled genomes with the dominant belonging to Sphingomonas, Sinobacteriaceae, Bradyrhizobium, Filimonas and Hydrogenophaga. Meta‐transcriptomics/‐proteomics and non‐target mass spectrometry suggested TBZ transformation by Sphingomonas via initial cleavage by a carbazole dioxygenase (car) to thiazole‐4‐carboxamidine (terminal compound) and catechol or a cleaved benzyl ring derivative, further transformed through an ortho‐cleavage (cat) pathway. Microbial co‐occurrence and gene expression networks suggested strong interactions between Sphingomonas and a Hydrogenophaga. The latter activated its cobalamin biosynthetic pathway and Sphingomonas its cobalamin salvage pathway to satisfy its B12 auxotrophy. Our findings indicate microbial interactions aligning with the ‘black queen hypothesis’ where Sphingomonas (detoxifier, B12 recipient) and Hydrogenophaga (B12 producer, enjoying detoxification) act as both helpers and beneficiaries.</description><subject>Auxotrophy</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Biodegradation</subject><subject>Biodegradation, Environmental</subject><subject>Carbazole</subject><subject>Carbazoles</subject><subject>Carbazoles - metabolism</subject><subject>Catechol</subject><subject>Cleavage</subject><subject>Consortia</subject><subject>Degradation</subject><subject>Deoxyribonucleic acid</subject><subject>Detoxification</subject><subject>Dioxygenase</subject><subject>Dioxygenases - metabolism</subject><subject>DNA</subject><subject>Environmental impact</subject><subject>Fungicides</subject><subject>Fungicides, Industrial - metabolism</subject><subject>Gene expression</subject><subject>Genetic transformation</subject><subject>Genomes</subject><subject>Hydrogenophaga</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metagenomics</subject><subject>Microorganisms</subject><subject>Proteomics</subject><subject>Sequence analysis</subject><subject>Sphingomonas</subject><subject>Sphingomonas - genetics</subject><subject>Sphingomonas - metabolism</subject><subject>Stable isotopes</subject><subject>Thiabendazole</subject><subject>Thiabendazole - metabolism</subject><subject>Transcriptomics</subject><subject>Vitamin B 12 - metabolism</subject><subject>Vitamin B12</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1TAQhS0Eoj-wZldZYn3b2EnsZFlVLa1UYAGsrYk9vnVJ7IudqA2rPkKfpg_Ek-D0lrvFG88cH38e-RDygRXHLK8TVgm-4i3PrWBMvCL7O-X1rmZ8jxykdFsUTJayeEv2ylq2bdU2--TpyzRGN7rgoafOjxj_PDwa3KA36LXDRMEbClRD7OB36HE5duF-XqOHhBQi0p84U-xxQD8mGmx2d6AzyWWkDj6FOLppoBH72fk1DT47vm1uch2G_G6iNkQ63iA1uI5gYJlm4SySnfzaaWcwdw66PNbzFO_IGwt9wvcv-yH5cXH-_exydf3109XZ6fVKlxUXK85KLUpRSSmNrWSBdWNZY-uWadNo4FBLDbLhlrWgedYFl7ZpG2hQiI7V5SH5uOVuYvg1YRrVbZhi_qukuCxF3RaVXFwnW5eOIaWIVm2iGyDOihVqyUktSaglFfWcU75x9MKdugHNzv8vmGyot4Y71-P8P546_3y1Bf8FEqiihA</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Vasileiadis, Sotirios</creator><creator>Perruchon, Chiara</creator><creator>Scheer, Benjamin</creator><creator>Adrian, Lorenz</creator><creator>Steinbach, Nicole</creator><creator>Trevisan, Marco</creator><creator>Plaza‐Bolaños, Patricia</creator><creator>Agüera, Ana</creator><creator>Chatzinotas, Antonis</creator><creator>Karpouzas, Dimitrios G.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8205-0842</orcidid><orcidid>https://orcid.org/0000-0002-2048-8192</orcidid></search><sort><creationdate>202211</creationdate><title>Nutritional inter‐dependencies and a carbazole‐dioxygenase are key elements of a bacterial consortium relying on a Sphingomonas for the degradation of the fungicide thiabendazole</title><author>Vasileiadis, Sotirios ; Perruchon, Chiara ; Scheer, Benjamin ; Adrian, Lorenz ; Steinbach, Nicole ; Trevisan, Marco ; Plaza‐Bolaños, Patricia ; Agüera, Ana ; Chatzinotas, Antonis ; Karpouzas, Dimitrios G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3426-213c6364777df470e58f18f591cd8ca2a57ca782f19ac2f59627f898a8e66b153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Auxotrophy</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Biodegradation</topic><topic>Biodegradation, Environmental</topic><topic>Carbazole</topic><topic>Carbazoles</topic><topic>Carbazoles - metabolism</topic><topic>Catechol</topic><topic>Cleavage</topic><topic>Consortia</topic><topic>Degradation</topic><topic>Deoxyribonucleic acid</topic><topic>Detoxification</topic><topic>Dioxygenase</topic><topic>Dioxygenases - metabolism</topic><topic>DNA</topic><topic>Environmental impact</topic><topic>Fungicides</topic><topic>Fungicides, Industrial - metabolism</topic><topic>Gene expression</topic><topic>Genetic transformation</topic><topic>Genomes</topic><topic>Hydrogenophaga</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metagenomics</topic><topic>Microorganisms</topic><topic>Proteomics</topic><topic>Sequence analysis</topic><topic>Sphingomonas</topic><topic>Sphingomonas - genetics</topic><topic>Sphingomonas - metabolism</topic><topic>Stable isotopes</topic><topic>Thiabendazole</topic><topic>Thiabendazole - metabolism</topic><topic>Transcriptomics</topic><topic>Vitamin B 12 - metabolism</topic><topic>Vitamin B12</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasileiadis, Sotirios</creatorcontrib><creatorcontrib>Perruchon, Chiara</creatorcontrib><creatorcontrib>Scheer, Benjamin</creatorcontrib><creatorcontrib>Adrian, Lorenz</creatorcontrib><creatorcontrib>Steinbach, Nicole</creatorcontrib><creatorcontrib>Trevisan, Marco</creatorcontrib><creatorcontrib>Plaza‐Bolaños, Patricia</creatorcontrib><creatorcontrib>Agüera, Ana</creatorcontrib><creatorcontrib>Chatzinotas, Antonis</creatorcontrib><creatorcontrib>Karpouzas, Dimitrios G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasileiadis, Sotirios</au><au>Perruchon, Chiara</au><au>Scheer, Benjamin</au><au>Adrian, Lorenz</au><au>Steinbach, Nicole</au><au>Trevisan, Marco</au><au>Plaza‐Bolaños, Patricia</au><au>Agüera, Ana</au><au>Chatzinotas, Antonis</au><au>Karpouzas, Dimitrios G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nutritional inter‐dependencies and a carbazole‐dioxygenase are key elements of a bacterial consortium relying on a Sphingomonas for the degradation of the fungicide thiabendazole</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2022-11</date><risdate>2022</risdate><volume>24</volume><issue>11</issue><spage>5105</spage><epage>5122</epage><pages>5105-5122</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Thiabendazole (TBZ), is a persistent fungicide/anthelminthic and a serious environmental threat. We previously enriched a TBZ‐degrading bacterial consortium and provided first evidence for a Sphingomonas involvement in TBZ transformation. Here, using a multi‐omic approach combined with DNA‐stable isotope probing (SIP) we verified the key degrading role of Sphingomonas and identify potential microbial interactions governing consortium functioning. SIP and amplicon sequencing analysis of the heavy and light DNA fraction of cultures grown on 13C‐labelled versus 12C‐TBZ showed that 66% of the 13C‐labelled TBZ was assimilated by Sphingomonas. Metagenomic analysis retrieved 18 metagenome‐assembled genomes with the dominant belonging to Sphingomonas, Sinobacteriaceae, Bradyrhizobium, Filimonas and Hydrogenophaga. Meta‐transcriptomics/‐proteomics and non‐target mass spectrometry suggested TBZ transformation by Sphingomonas via initial cleavage by a carbazole dioxygenase (car) to thiazole‐4‐carboxamidine (terminal compound) and catechol or a cleaved benzyl ring derivative, further transformed through an ortho‐cleavage (cat) pathway. Microbial co‐occurrence and gene expression networks suggested strong interactions between Sphingomonas and a Hydrogenophaga. The latter activated its cobalamin biosynthetic pathway and Sphingomonas its cobalamin salvage pathway to satisfy its B12 auxotrophy. Our findings indicate microbial interactions aligning with the ‘black queen hypothesis’ where Sphingomonas (detoxifier, B12 recipient) and Hydrogenophaga (B12 producer, enjoying detoxification) act as both helpers and beneficiaries.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>35799498</pmid><doi>10.1111/1462-2920.16116</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-8205-0842</orcidid><orcidid>https://orcid.org/0000-0002-2048-8192</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2022-11, Vol.24 (11), p.5105-5122 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_proquest_journals_2736590475 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Auxotrophy Bacteria - genetics Bacteria - metabolism Biodegradation Biodegradation, Environmental Carbazole Carbazoles Carbazoles - metabolism Catechol Cleavage Consortia Degradation Deoxyribonucleic acid Detoxification Dioxygenase Dioxygenases - metabolism DNA Environmental impact Fungicides Fungicides, Industrial - metabolism Gene expression Genetic transformation Genomes Hydrogenophaga Mass spectrometry Mass spectroscopy Metagenomics Microorganisms Proteomics Sequence analysis Sphingomonas Sphingomonas - genetics Sphingomonas - metabolism Stable isotopes Thiabendazole Thiabendazole - metabolism Transcriptomics Vitamin B 12 - metabolism Vitamin B12 |
title | Nutritional inter‐dependencies and a carbazole‐dioxygenase are key elements of a bacterial consortium relying on a Sphingomonas for the degradation of the fungicide thiabendazole |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nutritional%20inter%E2%80%90dependencies%20and%20a%20carbazole%E2%80%90dioxygenase%20are%20key%20elements%20of%20a%20bacterial%20consortium%20relying%20on%20a%20Sphingomonas%20for%20the%20degradation%20of%20the%20fungicide%20thiabendazole&rft.jtitle=Environmental%20microbiology&rft.au=Vasileiadis,%20Sotirios&rft.date=2022-11&rft.volume=24&rft.issue=11&rft.spage=5105&rft.epage=5122&rft.pages=5105-5122&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.16116&rft_dat=%3Cproquest_cross%3E2736590475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736590475&rft_id=info:pmid/35799498&rfr_iscdi=true |