An Adaptive Alternating Direction Method of Multipliers
The alternating direction method of multipliers (ADMM) is a powerful splitting algorithm for linearly constrained convex optimization problems. In view of its popularity and applicability, a growing attention is drawn toward the ADMM in nonconvex settings. Recent studies of minimization problems for...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2022-12, Vol.195 (3), p.1019-1055 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1055 |
---|---|
container_issue | 3 |
container_start_page | 1019 |
container_title | Journal of optimization theory and applications |
container_volume | 195 |
creator | Bartz, Sedi Campoy, Rubén Phan, Hung M. |
description | The alternating direction method of multipliers (ADMM) is a powerful splitting algorithm for linearly constrained convex optimization problems. In view of its popularity and applicability, a growing attention is drawn toward the ADMM in nonconvex settings. Recent studies of minimization problems for nonconvex functions include various combinations of assumptions on the objective function including, in particular, a Lipschitz gradient assumption. We consider the case where the objective is the sum of a strongly convex function and a weakly convex function. To this end, we present and study an adaptive version of the ADMM which incorporates generalized notions of convexity and penalty parameters adapted to the convexity constants of the functions. We prove convergence of the scheme under natural assumptions. To this end, we employ the recent adaptive Douglas–Rachford algorithm by revisiting the well-known duality relation between the classical ADMM and the Douglas–Rachford splitting algorithm, generalizing this connection to our setting. We illustrate our approach by relating and comparing to alternatives, and by numerical experiments on a signal denoising problem. |
doi_str_mv | 10.1007/s10957-022-02098-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736490127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736490127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6d906116bdee6c437d9e4d9c84b9d66620949225916ab776dd5819c12d9fc69e3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcF19U82qR3WcYnzOBG16GT3I4ZaluTVPDfm7GCOxeXs7jnHA4fIZeMXjNK1U1gFEqVU87TUahyOCILViqR80pVx2RBDy_BBZySsxD2lCaTKhZE1X1W22aM7hOzuovo-ya6fpfdOo8muqHPNhjfBpsNbbaZuujGzqEP5-SkbbqAF7-6JK_3dy-rx3z9_PC0qte5EVLEXFqgkjG5tYjSFEJZwMKCqYotWCll2loA5yUw2WyVktaWFQPDuIXWSECxJFdz7-iHjwlD1PthShu7oLkSsgDKki4Jn13GDyF4bPXo3XvjvzSj-gBIz4B0oqB_AGlIITGHQjL3O_R_1f-kvgHSKmcb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736490127</pqid></control><display><type>article</type><title>An Adaptive Alternating Direction Method of Multipliers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bartz, Sedi ; Campoy, Rubén ; Phan, Hung M.</creator><creatorcontrib>Bartz, Sedi ; Campoy, Rubén ; Phan, Hung M.</creatorcontrib><description>The alternating direction method of multipliers (ADMM) is a powerful splitting algorithm for linearly constrained convex optimization problems. In view of its popularity and applicability, a growing attention is drawn toward the ADMM in nonconvex settings. Recent studies of minimization problems for nonconvex functions include various combinations of assumptions on the objective function including, in particular, a Lipschitz gradient assumption. We consider the case where the objective is the sum of a strongly convex function and a weakly convex function. To this end, we present and study an adaptive version of the ADMM which incorporates generalized notions of convexity and penalty parameters adapted to the convexity constants of the functions. We prove convergence of the scheme under natural assumptions. To this end, we employ the recent adaptive Douglas–Rachford algorithm by revisiting the well-known duality relation between the classical ADMM and the Douglas–Rachford splitting algorithm, generalizing this connection to our setting. We illustrate our approach by relating and comparing to alternatives, and by numerical experiments on a signal denoising problem.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-022-02098-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive algorithms ; Algorithms ; Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational geometry ; Convexity ; Engineering ; Mathematics ; Mathematics and Statistics ; Multipliers ; Operations Research/Decision Theory ; Optimization ; Splitting ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2022-12, Vol.195 (3), p.1019-1055</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6d906116bdee6c437d9e4d9c84b9d66620949225916ab776dd5819c12d9fc69e3</citedby><cites>FETCH-LOGICAL-c363t-6d906116bdee6c437d9e4d9c84b9d66620949225916ab776dd5819c12d9fc69e3</cites><orcidid>0000-0002-1275-7831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-022-02098-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-022-02098-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bartz, Sedi</creatorcontrib><creatorcontrib>Campoy, Rubén</creatorcontrib><creatorcontrib>Phan, Hung M.</creatorcontrib><title>An Adaptive Alternating Direction Method of Multipliers</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>The alternating direction method of multipliers (ADMM) is a powerful splitting algorithm for linearly constrained convex optimization problems. In view of its popularity and applicability, a growing attention is drawn toward the ADMM in nonconvex settings. Recent studies of minimization problems for nonconvex functions include various combinations of assumptions on the objective function including, in particular, a Lipschitz gradient assumption. We consider the case where the objective is the sum of a strongly convex function and a weakly convex function. To this end, we present and study an adaptive version of the ADMM which incorporates generalized notions of convexity and penalty parameters adapted to the convexity constants of the functions. We prove convergence of the scheme under natural assumptions. To this end, we employ the recent adaptive Douglas–Rachford algorithm by revisiting the well-known duality relation between the classical ADMM and the Douglas–Rachford splitting algorithm, generalizing this connection to our setting. We illustrate our approach by relating and comparing to alternatives, and by numerical experiments on a signal denoising problem.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational geometry</subject><subject>Convexity</subject><subject>Engineering</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multipliers</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Splitting</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcF19U82qR3WcYnzOBG16GT3I4ZaluTVPDfm7GCOxeXs7jnHA4fIZeMXjNK1U1gFEqVU87TUahyOCILViqR80pVx2RBDy_BBZySsxD2lCaTKhZE1X1W22aM7hOzuovo-ya6fpfdOo8muqHPNhjfBpsNbbaZuujGzqEP5-SkbbqAF7-6JK_3dy-rx3z9_PC0qte5EVLEXFqgkjG5tYjSFEJZwMKCqYotWCll2loA5yUw2WyVktaWFQPDuIXWSECxJFdz7-iHjwlD1PthShu7oLkSsgDKki4Jn13GDyF4bPXo3XvjvzSj-gBIz4B0oqB_AGlIITGHQjL3O_R_1f-kvgHSKmcb</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Bartz, Sedi</creator><creator>Campoy, Rubén</creator><creator>Phan, Hung M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1275-7831</orcidid></search><sort><creationdate>20221201</creationdate><title>An Adaptive Alternating Direction Method of Multipliers</title><author>Bartz, Sedi ; Campoy, Rubén ; Phan, Hung M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6d906116bdee6c437d9e4d9c84b9d66620949225916ab776dd5819c12d9fc69e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational geometry</topic><topic>Convexity</topic><topic>Engineering</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multipliers</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Splitting</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartz, Sedi</creatorcontrib><creatorcontrib>Campoy, Rubén</creatorcontrib><creatorcontrib>Phan, Hung M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartz, Sedi</au><au>Campoy, Rubén</au><au>Phan, Hung M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Alternating Direction Method of Multipliers</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>195</volume><issue>3</issue><spage>1019</spage><epage>1055</epage><pages>1019-1055</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>The alternating direction method of multipliers (ADMM) is a powerful splitting algorithm for linearly constrained convex optimization problems. In view of its popularity and applicability, a growing attention is drawn toward the ADMM in nonconvex settings. Recent studies of minimization problems for nonconvex functions include various combinations of assumptions on the objective function including, in particular, a Lipschitz gradient assumption. We consider the case where the objective is the sum of a strongly convex function and a weakly convex function. To this end, we present and study an adaptive version of the ADMM which incorporates generalized notions of convexity and penalty parameters adapted to the convexity constants of the functions. We prove convergence of the scheme under natural assumptions. To this end, we employ the recent adaptive Douglas–Rachford algorithm by revisiting the well-known duality relation between the classical ADMM and the Douglas–Rachford splitting algorithm, generalizing this connection to our setting. We illustrate our approach by relating and comparing to alternatives, and by numerical experiments on a signal denoising problem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-022-02098-9</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-1275-7831</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2022-12, Vol.195 (3), p.1019-1055 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_journals_2736490127 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptive algorithms Algorithms Applications of Mathematics Calculus of Variations and Optimal Control Optimization Computational geometry Convexity Engineering Mathematics Mathematics and Statistics Multipliers Operations Research/Decision Theory Optimization Splitting Theory of Computation |
title | An Adaptive Alternating Direction Method of Multipliers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Alternating%20Direction%20Method%20of%20Multipliers&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Bartz,%20Sedi&rft.date=2022-12-01&rft.volume=195&rft.issue=3&rft.spage=1019&rft.epage=1055&rft.pages=1019-1055&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-022-02098-9&rft_dat=%3Cproquest_cross%3E2736490127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736490127&rft_id=info:pmid/&rfr_iscdi=true |