Ultrafast opto-mechanical terahertz modulators based on stretchable carbon nanotube thin films

For terahertz (THz) wave applications, tunable and rapid modulation is highly required. When studied by means of optical pump-terahertz probe spectroscopy, single-walled carbon nanotubes (SWCNTs) thin films demonstrated ultrafast carrier recombination lifetimes with a high relative change in the sig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-11
Hauptverfasser: Paukov, Maksim I, Starchenko, Vladimir V, Krasnikov, Dmitry V, Komandin, Gennady A, Gladush, Yuriy G, Zhukov, Sergey S, Gorshunov, Boris P, Nasibulin, Albert G, Arsenin, Aleksey V, Volkov, Valentyn S, Burdanova, Maria G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Paukov, Maksim I
Starchenko, Vladimir V
Krasnikov, Dmitry V
Komandin, Gennady A
Gladush, Yuriy G
Zhukov, Sergey S
Gorshunov, Boris P
Nasibulin, Albert G
Arsenin, Aleksey V
Volkov, Valentyn S
Burdanova, Maria G
description For terahertz (THz) wave applications, tunable and rapid modulation is highly required. When studied by means of optical pump-terahertz probe spectroscopy, single-walled carbon nanotubes (SWCNTs) thin films demonstrated ultrafast carrier recombination lifetimes with a high relative change in the signal under optical excitation, making them promising candidates for high-speed modulators. Here, combination of SWCNTthin films and stretchable substrates facilitated studies of the SWCNT mechanical properties under strain,and enabled the development of a new type of an opto-mechanical modulator. By applying a certain strain to the SWCNT films, the effective sheet conductance and therefore modulation depth can be fine-tuned to optimize the designed modulator. Modulators exhibited a photoconductivity change of 3-4 orders of magnitude under the strain due to the structural modification in the SWCNT network. Stretching was used to control the THz signal with a modulation depth of around 100 % without strain and 65 % at a high strainoperation of 40 %. The sensitivity of modulators to beam polarisation is also shown, which might also come in handy for the design of a stretchable polariser. Our results give a fundamental grounding for the design of high-sensitivity stretchable devices based on SWCNT films.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2736483602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736483602</sourcerecordid><originalsourceid>FETCH-proquest_journals_27364836023</originalsourceid><addsrcrecordid>eNqNiksKwjAQQIMgWLR3GHBdqEl_e1E8gG6VaTulLWlSM9ONp7cLD-DqwXtvoyJtzCmpMq13KmYe0zTVRanz3ETq-bASsEMW8LP4ZKKmRzc0aEEoYE9BPjD5drEoPjDUyNSCd8ASSNa3tgQNhnpVDp2XpSaQfnDQDXbig9p2aJniH_fqeL3cz7dkDv69EMtr9Etwa3rp0hRZZYpUm_-uLwTbRU4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736483602</pqid></control><display><type>article</type><title>Ultrafast opto-mechanical terahertz modulators based on stretchable carbon nanotube thin films</title><source>Free E- Journals</source><creator>Paukov, Maksim I ; Starchenko, Vladimir V ; Krasnikov, Dmitry V ; Komandin, Gennady A ; Gladush, Yuriy G ; Zhukov, Sergey S ; Gorshunov, Boris P ; Nasibulin, Albert G ; Arsenin, Aleksey V ; Volkov, Valentyn S ; Burdanova, Maria G</creator><creatorcontrib>Paukov, Maksim I ; Starchenko, Vladimir V ; Krasnikov, Dmitry V ; Komandin, Gennady A ; Gladush, Yuriy G ; Zhukov, Sergey S ; Gorshunov, Boris P ; Nasibulin, Albert G ; Arsenin, Aleksey V ; Volkov, Valentyn S ; Burdanova, Maria G</creatorcontrib><description>For terahertz (THz) wave applications, tunable and rapid modulation is highly required. When studied by means of optical pump-terahertz probe spectroscopy, single-walled carbon nanotubes (SWCNTs) thin films demonstrated ultrafast carrier recombination lifetimes with a high relative change in the signal under optical excitation, making them promising candidates for high-speed modulators. Here, combination of SWCNTthin films and stretchable substrates facilitated studies of the SWCNT mechanical properties under strain,and enabled the development of a new type of an opto-mechanical modulator. By applying a certain strain to the SWCNT films, the effective sheet conductance and therefore modulation depth can be fine-tuned to optimize the designed modulator. Modulators exhibited a photoconductivity change of 3-4 orders of magnitude under the strain due to the structural modification in the SWCNT network. Stretching was used to control the THz signal with a modulation depth of around 100 % without strain and 65 % at a high strainoperation of 40 %. The sensitivity of modulators to beam polarisation is also shown, which might also come in handy for the design of a stretchable polariser. Our results give a fundamental grounding for the design of high-sensitivity stretchable devices based on SWCNT films.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Beams (radiation) ; Carrier recombination ; Mechanical properties ; Modulation ; Modulators ; Optical communication ; Photoconductivity ; Sensitivity ; Single wall carbon nanotubes ; Strain ; Substrates ; Terahertz frequencies ; Thin films</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Paukov, Maksim I</creatorcontrib><creatorcontrib>Starchenko, Vladimir V</creatorcontrib><creatorcontrib>Krasnikov, Dmitry V</creatorcontrib><creatorcontrib>Komandin, Gennady A</creatorcontrib><creatorcontrib>Gladush, Yuriy G</creatorcontrib><creatorcontrib>Zhukov, Sergey S</creatorcontrib><creatorcontrib>Gorshunov, Boris P</creatorcontrib><creatorcontrib>Nasibulin, Albert G</creatorcontrib><creatorcontrib>Arsenin, Aleksey V</creatorcontrib><creatorcontrib>Volkov, Valentyn S</creatorcontrib><creatorcontrib>Burdanova, Maria G</creatorcontrib><title>Ultrafast opto-mechanical terahertz modulators based on stretchable carbon nanotube thin films</title><title>arXiv.org</title><description>For terahertz (THz) wave applications, tunable and rapid modulation is highly required. When studied by means of optical pump-terahertz probe spectroscopy, single-walled carbon nanotubes (SWCNTs) thin films demonstrated ultrafast carrier recombination lifetimes with a high relative change in the signal under optical excitation, making them promising candidates for high-speed modulators. Here, combination of SWCNTthin films and stretchable substrates facilitated studies of the SWCNT mechanical properties under strain,and enabled the development of a new type of an opto-mechanical modulator. By applying a certain strain to the SWCNT films, the effective sheet conductance and therefore modulation depth can be fine-tuned to optimize the designed modulator. Modulators exhibited a photoconductivity change of 3-4 orders of magnitude under the strain due to the structural modification in the SWCNT network. Stretching was used to control the THz signal with a modulation depth of around 100 % without strain and 65 % at a high strainoperation of 40 %. The sensitivity of modulators to beam polarisation is also shown, which might also come in handy for the design of a stretchable polariser. Our results give a fundamental grounding for the design of high-sensitivity stretchable devices based on SWCNT films.</description><subject>Beams (radiation)</subject><subject>Carrier recombination</subject><subject>Mechanical properties</subject><subject>Modulation</subject><subject>Modulators</subject><subject>Optical communication</subject><subject>Photoconductivity</subject><subject>Sensitivity</subject><subject>Single wall carbon nanotubes</subject><subject>Strain</subject><subject>Substrates</subject><subject>Terahertz frequencies</subject><subject>Thin films</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAQQIMgWLR3GHBdqEl_e1E8gG6VaTulLWlSM9ONp7cLD-DqwXtvoyJtzCmpMq13KmYe0zTVRanz3ETq-bASsEMW8LP4ZKKmRzc0aEEoYE9BPjD5drEoPjDUyNSCd8ASSNa3tgQNhnpVDp2XpSaQfnDQDXbig9p2aJniH_fqeL3cz7dkDv69EMtr9Etwa3rp0hRZZYpUm_-uLwTbRU4</recordid><startdate>20221114</startdate><enddate>20221114</enddate><creator>Paukov, Maksim I</creator><creator>Starchenko, Vladimir V</creator><creator>Krasnikov, Dmitry V</creator><creator>Komandin, Gennady A</creator><creator>Gladush, Yuriy G</creator><creator>Zhukov, Sergey S</creator><creator>Gorshunov, Boris P</creator><creator>Nasibulin, Albert G</creator><creator>Arsenin, Aleksey V</creator><creator>Volkov, Valentyn S</creator><creator>Burdanova, Maria G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221114</creationdate><title>Ultrafast opto-mechanical terahertz modulators based on stretchable carbon nanotube thin films</title><author>Paukov, Maksim I ; Starchenko, Vladimir V ; Krasnikov, Dmitry V ; Komandin, Gennady A ; Gladush, Yuriy G ; Zhukov, Sergey S ; Gorshunov, Boris P ; Nasibulin, Albert G ; Arsenin, Aleksey V ; Volkov, Valentyn S ; Burdanova, Maria G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27364836023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Beams (radiation)</topic><topic>Carrier recombination</topic><topic>Mechanical properties</topic><topic>Modulation</topic><topic>Modulators</topic><topic>Optical communication</topic><topic>Photoconductivity</topic><topic>Sensitivity</topic><topic>Single wall carbon nanotubes</topic><topic>Strain</topic><topic>Substrates</topic><topic>Terahertz frequencies</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Paukov, Maksim I</creatorcontrib><creatorcontrib>Starchenko, Vladimir V</creatorcontrib><creatorcontrib>Krasnikov, Dmitry V</creatorcontrib><creatorcontrib>Komandin, Gennady A</creatorcontrib><creatorcontrib>Gladush, Yuriy G</creatorcontrib><creatorcontrib>Zhukov, Sergey S</creatorcontrib><creatorcontrib>Gorshunov, Boris P</creatorcontrib><creatorcontrib>Nasibulin, Albert G</creatorcontrib><creatorcontrib>Arsenin, Aleksey V</creatorcontrib><creatorcontrib>Volkov, Valentyn S</creatorcontrib><creatorcontrib>Burdanova, Maria G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paukov, Maksim I</au><au>Starchenko, Vladimir V</au><au>Krasnikov, Dmitry V</au><au>Komandin, Gennady A</au><au>Gladush, Yuriy G</au><au>Zhukov, Sergey S</au><au>Gorshunov, Boris P</au><au>Nasibulin, Albert G</au><au>Arsenin, Aleksey V</au><au>Volkov, Valentyn S</au><au>Burdanova, Maria G</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Ultrafast opto-mechanical terahertz modulators based on stretchable carbon nanotube thin films</atitle><jtitle>arXiv.org</jtitle><date>2022-11-14</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>For terahertz (THz) wave applications, tunable and rapid modulation is highly required. When studied by means of optical pump-terahertz probe spectroscopy, single-walled carbon nanotubes (SWCNTs) thin films demonstrated ultrafast carrier recombination lifetimes with a high relative change in the signal under optical excitation, making them promising candidates for high-speed modulators. Here, combination of SWCNTthin films and stretchable substrates facilitated studies of the SWCNT mechanical properties under strain,and enabled the development of a new type of an opto-mechanical modulator. By applying a certain strain to the SWCNT films, the effective sheet conductance and therefore modulation depth can be fine-tuned to optimize the designed modulator. Modulators exhibited a photoconductivity change of 3-4 orders of magnitude under the strain due to the structural modification in the SWCNT network. Stretching was used to control the THz signal with a modulation depth of around 100 % without strain and 65 % at a high strainoperation of 40 %. The sensitivity of modulators to beam polarisation is also shown, which might also come in handy for the design of a stretchable polariser. Our results give a fundamental grounding for the design of high-sensitivity stretchable devices based on SWCNT films.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2736483602
source Free E- Journals
subjects Beams (radiation)
Carrier recombination
Mechanical properties
Modulation
Modulators
Optical communication
Photoconductivity
Sensitivity
Single wall carbon nanotubes
Strain
Substrates
Terahertz frequencies
Thin films
title Ultrafast opto-mechanical terahertz modulators based on stretchable carbon nanotube thin films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A40%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Ultrafast%20opto-mechanical%20terahertz%20modulators%20based%20on%20stretchable%20carbon%20nanotube%20thin%20films&rft.jtitle=arXiv.org&rft.au=Paukov,%20Maksim%20I&rft.date=2022-11-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2736483602%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736483602&rft_id=info:pmid/&rfr_iscdi=true