Acoustic metamaterial design for noise reduction in vacuum cleaner
In this study, we investigate the acoustic metamaterial (AMM) design for flow noise reduction when using a vacuum cleaner. The AMM was based on the principle of Helmholtz resonators, and metamaterial design variables were defined to reduce noise to approximately 1.5 and 2.5 kHz bands. An acoustic si...
Gespeichert in:
Veröffentlicht in: | Journal of mechanical science and technology 2022-11, Vol.36 (11), p.5353-5362 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5362 |
---|---|
container_issue | 11 |
container_start_page | 5353 |
container_title | Journal of mechanical science and technology |
container_volume | 36 |
creator | An, Ki Yong Kwon, Hojin Jang, Jun-Young Song, Kyungjun |
description | In this study, we investigate the acoustic metamaterial (AMM) design for flow noise reduction when using a vacuum cleaner. The AMM was based on the principle of Helmholtz resonators, and metamaterial design variables were defined to reduce noise to approximately 1.5 and 2.5 kHz bands. An acoustic simulation was performed considering the thermoviscous effect using the designed AMM, and a transmission loss in the simulation results was calculated using the four-microphone method. Finally, noise experiments were performed on a vacuum cleaner equipped with metamaterial. Through this, the noise reduction performance of metamaterial predicted through simulations was verified, thereby showing the selective implementation of noise reduction in the desired frequency band. |
doi_str_mv | 10.1007/s12206-022-1002-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736326032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736326032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-a6b57c32465ebcc8d4a4eaca977793af7cd2911793984db0fd519b3a9f7811d93</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKs_wFvAczRfm2yOtfgFBS8K3kI2yZaUblKTXcF_b8oKnjy9M_DMvDAAXBN8SzCWd4VQigXClKLqKcInYEGUFIi1lJ9WLVmLuOIf5-CilB3GgnJCFuB-ZdNUxmDh4EczmNHnYPbQ-RK2EfYpw5hC8TB7N9kxpAhDhF_GTtMA7d6b6PMlOOvNvvir37sE748Pb-tntHl9elmvNshSLkZkRNdIy6pufGdt67jh3lijpJSKmV5aRxUhVauWuw73riGqY0b1siXEKbYEN3PvIafPyZdR79KUY32pqWSCUYEZrRSZKZtTKdn3-pDDYPK3Jlgfp9LzVLpOdfRU45qhc6ZUNm59_mv-P_QDVo9rjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736326032</pqid></control><display><type>article</type><title>Acoustic metamaterial design for noise reduction in vacuum cleaner</title><source>SpringerLink Journals - AutoHoldings</source><creator>An, Ki Yong ; Kwon, Hojin ; Jang, Jun-Young ; Song, Kyungjun</creator><creatorcontrib>An, Ki Yong ; Kwon, Hojin ; Jang, Jun-Young ; Song, Kyungjun</creatorcontrib><description>In this study, we investigate the acoustic metamaterial (AMM) design for flow noise reduction when using a vacuum cleaner. The AMM was based on the principle of Helmholtz resonators, and metamaterial design variables were defined to reduce noise to approximately 1.5 and 2.5 kHz bands. An acoustic simulation was performed considering the thermoviscous effect using the designed AMM, and a transmission loss in the simulation results was calculated using the four-microphone method. Finally, noise experiments were performed on a vacuum cleaner equipped with metamaterial. Through this, the noise reduction performance of metamaterial predicted through simulations was verified, thereby showing the selective implementation of noise reduction in the desired frequency band.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-022-1002-0</identifier><language>eng</language><publisher>Seoul: Korean Society of Mechanical Engineers</publisher><subject>Acoustic noise ; Acoustic simulation ; Control ; Dynamical Systems ; Engineering ; Frequencies ; Helmholtz resonators ; Industrial and Production Engineering ; Mechanical Engineering ; Metamaterials ; Noise prediction ; Noise reduction ; Original Article ; Transmission loss ; Vacuum cleaners ; Vibration</subject><ispartof>Journal of mechanical science and technology, 2022-11, Vol.36 (11), p.5353-5362</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-a6b57c32465ebcc8d4a4eaca977793af7cd2911793984db0fd519b3a9f7811d93</citedby><cites>FETCH-LOGICAL-c246t-a6b57c32465ebcc8d4a4eaca977793af7cd2911793984db0fd519b3a9f7811d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12206-022-1002-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12206-022-1002-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>An, Ki Yong</creatorcontrib><creatorcontrib>Kwon, Hojin</creatorcontrib><creatorcontrib>Jang, Jun-Young</creatorcontrib><creatorcontrib>Song, Kyungjun</creatorcontrib><title>Acoustic metamaterial design for noise reduction in vacuum cleaner</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>In this study, we investigate the acoustic metamaterial (AMM) design for flow noise reduction when using a vacuum cleaner. The AMM was based on the principle of Helmholtz resonators, and metamaterial design variables were defined to reduce noise to approximately 1.5 and 2.5 kHz bands. An acoustic simulation was performed considering the thermoviscous effect using the designed AMM, and a transmission loss in the simulation results was calculated using the four-microphone method. Finally, noise experiments were performed on a vacuum cleaner equipped with metamaterial. Through this, the noise reduction performance of metamaterial predicted through simulations was verified, thereby showing the selective implementation of noise reduction in the desired frequency band.</description><subject>Acoustic noise</subject><subject>Acoustic simulation</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Frequencies</subject><subject>Helmholtz resonators</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Metamaterials</subject><subject>Noise prediction</subject><subject>Noise reduction</subject><subject>Original Article</subject><subject>Transmission loss</subject><subject>Vacuum cleaners</subject><subject>Vibration</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEYhIMoWKs_wFvAczRfm2yOtfgFBS8K3kI2yZaUblKTXcF_b8oKnjy9M_DMvDAAXBN8SzCWd4VQigXClKLqKcInYEGUFIi1lJ9WLVmLuOIf5-CilB3GgnJCFuB-ZdNUxmDh4EczmNHnYPbQ-RK2EfYpw5hC8TB7N9kxpAhDhF_GTtMA7d6b6PMlOOvNvvir37sE748Pb-tntHl9elmvNshSLkZkRNdIy6pufGdt67jh3lijpJSKmV5aRxUhVauWuw73riGqY0b1siXEKbYEN3PvIafPyZdR79KUY32pqWSCUYEZrRSZKZtTKdn3-pDDYPK3Jlgfp9LzVLpOdfRU45qhc6ZUNm59_mv-P_QDVo9rjA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>An, Ki Yong</creator><creator>Kwon, Hojin</creator><creator>Jang, Jun-Young</creator><creator>Song, Kyungjun</creator><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20221101</creationdate><title>Acoustic metamaterial design for noise reduction in vacuum cleaner</title><author>An, Ki Yong ; Kwon, Hojin ; Jang, Jun-Young ; Song, Kyungjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-a6b57c32465ebcc8d4a4eaca977793af7cd2911793984db0fd519b3a9f7811d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic noise</topic><topic>Acoustic simulation</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Frequencies</topic><topic>Helmholtz resonators</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Metamaterials</topic><topic>Noise prediction</topic><topic>Noise reduction</topic><topic>Original Article</topic><topic>Transmission loss</topic><topic>Vacuum cleaners</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Ki Yong</creatorcontrib><creatorcontrib>Kwon, Hojin</creatorcontrib><creatorcontrib>Jang, Jun-Young</creatorcontrib><creatorcontrib>Song, Kyungjun</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Ki Yong</au><au>Kwon, Hojin</au><au>Jang, Jun-Young</au><au>Song, Kyungjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic metamaterial design for noise reduction in vacuum cleaner</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>36</volume><issue>11</issue><spage>5353</spage><epage>5362</epage><pages>5353-5362</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>In this study, we investigate the acoustic metamaterial (AMM) design for flow noise reduction when using a vacuum cleaner. The AMM was based on the principle of Helmholtz resonators, and metamaterial design variables were defined to reduce noise to approximately 1.5 and 2.5 kHz bands. An acoustic simulation was performed considering the thermoviscous effect using the designed AMM, and a transmission loss in the simulation results was calculated using the four-microphone method. Finally, noise experiments were performed on a vacuum cleaner equipped with metamaterial. Through this, the noise reduction performance of metamaterial predicted through simulations was verified, thereby showing the selective implementation of noise reduction in the desired frequency band.</abstract><cop>Seoul</cop><pub>Korean Society of Mechanical Engineers</pub><doi>10.1007/s12206-022-1002-0</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1738-494X |
ispartof | Journal of mechanical science and technology, 2022-11, Vol.36 (11), p.5353-5362 |
issn | 1738-494X 1976-3824 |
language | eng |
recordid | cdi_proquest_journals_2736326032 |
source | SpringerLink Journals - AutoHoldings |
subjects | Acoustic noise Acoustic simulation Control Dynamical Systems Engineering Frequencies Helmholtz resonators Industrial and Production Engineering Mechanical Engineering Metamaterials Noise prediction Noise reduction Original Article Transmission loss Vacuum cleaners Vibration |
title | Acoustic metamaterial design for noise reduction in vacuum cleaner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20metamaterial%20design%20for%20noise%20reduction%20in%20vacuum%20cleaner&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=An,%20Ki%20Yong&rft.date=2022-11-01&rft.volume=36&rft.issue=11&rft.spage=5353&rft.epage=5362&rft.pages=5353-5362&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-022-1002-0&rft_dat=%3Cproquest_cross%3E2736326032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736326032&rft_id=info:pmid/&rfr_iscdi=true |