Acoustic metamaterial design for noise reduction in vacuum cleaner

In this study, we investigate the acoustic metamaterial (AMM) design for flow noise reduction when using a vacuum cleaner. The AMM was based on the principle of Helmholtz resonators, and metamaterial design variables were defined to reduce noise to approximately 1.5 and 2.5 kHz bands. An acoustic si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical science and technology 2022-11, Vol.36 (11), p.5353-5362
Hauptverfasser: An, Ki Yong, Kwon, Hojin, Jang, Jun-Young, Song, Kyungjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5362
container_issue 11
container_start_page 5353
container_title Journal of mechanical science and technology
container_volume 36
creator An, Ki Yong
Kwon, Hojin
Jang, Jun-Young
Song, Kyungjun
description In this study, we investigate the acoustic metamaterial (AMM) design for flow noise reduction when using a vacuum cleaner. The AMM was based on the principle of Helmholtz resonators, and metamaterial design variables were defined to reduce noise to approximately 1.5 and 2.5 kHz bands. An acoustic simulation was performed considering the thermoviscous effect using the designed AMM, and a transmission loss in the simulation results was calculated using the four-microphone method. Finally, noise experiments were performed on a vacuum cleaner equipped with metamaterial. Through this, the noise reduction performance of metamaterial predicted through simulations was verified, thereby showing the selective implementation of noise reduction in the desired frequency band.
doi_str_mv 10.1007/s12206-022-1002-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736326032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736326032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-a6b57c32465ebcc8d4a4eaca977793af7cd2911793984db0fd519b3a9f7811d93</originalsourceid><addsrcrecordid>eNp1kE1LAzEYhIMoWKs_wFvAczRfm2yOtfgFBS8K3kI2yZaUblKTXcF_b8oKnjy9M_DMvDAAXBN8SzCWd4VQigXClKLqKcInYEGUFIi1lJ9WLVmLuOIf5-CilB3GgnJCFuB-ZdNUxmDh4EczmNHnYPbQ-RK2EfYpw5hC8TB7N9kxpAhDhF_GTtMA7d6b6PMlOOvNvvir37sE748Pb-tntHl9elmvNshSLkZkRNdIy6pufGdt67jh3lijpJSKmV5aRxUhVauWuw73riGqY0b1siXEKbYEN3PvIafPyZdR79KUY32pqWSCUYEZrRSZKZtTKdn3-pDDYPK3Jlgfp9LzVLpOdfRU45qhc6ZUNm59_mv-P_QDVo9rjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736326032</pqid></control><display><type>article</type><title>Acoustic metamaterial design for noise reduction in vacuum cleaner</title><source>SpringerLink Journals - AutoHoldings</source><creator>An, Ki Yong ; Kwon, Hojin ; Jang, Jun-Young ; Song, Kyungjun</creator><creatorcontrib>An, Ki Yong ; Kwon, Hojin ; Jang, Jun-Young ; Song, Kyungjun</creatorcontrib><description>In this study, we investigate the acoustic metamaterial (AMM) design for flow noise reduction when using a vacuum cleaner. The AMM was based on the principle of Helmholtz resonators, and metamaterial design variables were defined to reduce noise to approximately 1.5 and 2.5 kHz bands. An acoustic simulation was performed considering the thermoviscous effect using the designed AMM, and a transmission loss in the simulation results was calculated using the four-microphone method. Finally, noise experiments were performed on a vacuum cleaner equipped with metamaterial. Through this, the noise reduction performance of metamaterial predicted through simulations was verified, thereby showing the selective implementation of noise reduction in the desired frequency band.</description><identifier>ISSN: 1738-494X</identifier><identifier>EISSN: 1976-3824</identifier><identifier>DOI: 10.1007/s12206-022-1002-0</identifier><language>eng</language><publisher>Seoul: Korean Society of Mechanical Engineers</publisher><subject>Acoustic noise ; Acoustic simulation ; Control ; Dynamical Systems ; Engineering ; Frequencies ; Helmholtz resonators ; Industrial and Production Engineering ; Mechanical Engineering ; Metamaterials ; Noise prediction ; Noise reduction ; Original Article ; Transmission loss ; Vacuum cleaners ; Vibration</subject><ispartof>Journal of mechanical science and technology, 2022-11, Vol.36 (11), p.5353-5362</ispartof><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-a6b57c32465ebcc8d4a4eaca977793af7cd2911793984db0fd519b3a9f7811d93</citedby><cites>FETCH-LOGICAL-c246t-a6b57c32465ebcc8d4a4eaca977793af7cd2911793984db0fd519b3a9f7811d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12206-022-1002-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12206-022-1002-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>An, Ki Yong</creatorcontrib><creatorcontrib>Kwon, Hojin</creatorcontrib><creatorcontrib>Jang, Jun-Young</creatorcontrib><creatorcontrib>Song, Kyungjun</creatorcontrib><title>Acoustic metamaterial design for noise reduction in vacuum cleaner</title><title>Journal of mechanical science and technology</title><addtitle>J Mech Sci Technol</addtitle><description>In this study, we investigate the acoustic metamaterial (AMM) design for flow noise reduction when using a vacuum cleaner. The AMM was based on the principle of Helmholtz resonators, and metamaterial design variables were defined to reduce noise to approximately 1.5 and 2.5 kHz bands. An acoustic simulation was performed considering the thermoviscous effect using the designed AMM, and a transmission loss in the simulation results was calculated using the four-microphone method. Finally, noise experiments were performed on a vacuum cleaner equipped with metamaterial. Through this, the noise reduction performance of metamaterial predicted through simulations was verified, thereby showing the selective implementation of noise reduction in the desired frequency band.</description><subject>Acoustic noise</subject><subject>Acoustic simulation</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Frequencies</subject><subject>Helmholtz resonators</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Metamaterials</subject><subject>Noise prediction</subject><subject>Noise reduction</subject><subject>Original Article</subject><subject>Transmission loss</subject><subject>Vacuum cleaners</subject><subject>Vibration</subject><issn>1738-494X</issn><issn>1976-3824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEYhIMoWKs_wFvAczRfm2yOtfgFBS8K3kI2yZaUblKTXcF_b8oKnjy9M_DMvDAAXBN8SzCWd4VQigXClKLqKcInYEGUFIi1lJ9WLVmLuOIf5-CilB3GgnJCFuB-ZdNUxmDh4EczmNHnYPbQ-RK2EfYpw5hC8TB7N9kxpAhDhF_GTtMA7d6b6PMlOOvNvvir37sE748Pb-tntHl9elmvNshSLkZkRNdIy6pufGdt67jh3lijpJSKmV5aRxUhVauWuw73riGqY0b1siXEKbYEN3PvIafPyZdR79KUY32pqWSCUYEZrRSZKZtTKdn3-pDDYPK3Jlgfp9LzVLpOdfRU45qhc6ZUNm59_mv-P_QDVo9rjA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>An, Ki Yong</creator><creator>Kwon, Hojin</creator><creator>Jang, Jun-Young</creator><creator>Song, Kyungjun</creator><general>Korean Society of Mechanical Engineers</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20221101</creationdate><title>Acoustic metamaterial design for noise reduction in vacuum cleaner</title><author>An, Ki Yong ; Kwon, Hojin ; Jang, Jun-Young ; Song, Kyungjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-a6b57c32465ebcc8d4a4eaca977793af7cd2911793984db0fd519b3a9f7811d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic noise</topic><topic>Acoustic simulation</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Frequencies</topic><topic>Helmholtz resonators</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Metamaterials</topic><topic>Noise prediction</topic><topic>Noise reduction</topic><topic>Original Article</topic><topic>Transmission loss</topic><topic>Vacuum cleaners</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Ki Yong</creatorcontrib><creatorcontrib>Kwon, Hojin</creatorcontrib><creatorcontrib>Jang, Jun-Young</creatorcontrib><creatorcontrib>Song, Kyungjun</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of mechanical science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Ki Yong</au><au>Kwon, Hojin</au><au>Jang, Jun-Young</au><au>Song, Kyungjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acoustic metamaterial design for noise reduction in vacuum cleaner</atitle><jtitle>Journal of mechanical science and technology</jtitle><stitle>J Mech Sci Technol</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>36</volume><issue>11</issue><spage>5353</spage><epage>5362</epage><pages>5353-5362</pages><issn>1738-494X</issn><eissn>1976-3824</eissn><abstract>In this study, we investigate the acoustic metamaterial (AMM) design for flow noise reduction when using a vacuum cleaner. The AMM was based on the principle of Helmholtz resonators, and metamaterial design variables were defined to reduce noise to approximately 1.5 and 2.5 kHz bands. An acoustic simulation was performed considering the thermoviscous effect using the designed AMM, and a transmission loss in the simulation results was calculated using the four-microphone method. Finally, noise experiments were performed on a vacuum cleaner equipped with metamaterial. Through this, the noise reduction performance of metamaterial predicted through simulations was verified, thereby showing the selective implementation of noise reduction in the desired frequency band.</abstract><cop>Seoul</cop><pub>Korean Society of Mechanical Engineers</pub><doi>10.1007/s12206-022-1002-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1738-494X
ispartof Journal of mechanical science and technology, 2022-11, Vol.36 (11), p.5353-5362
issn 1738-494X
1976-3824
language eng
recordid cdi_proquest_journals_2736326032
source SpringerLink Journals - AutoHoldings
subjects Acoustic noise
Acoustic simulation
Control
Dynamical Systems
Engineering
Frequencies
Helmholtz resonators
Industrial and Production Engineering
Mechanical Engineering
Metamaterials
Noise prediction
Noise reduction
Original Article
Transmission loss
Vacuum cleaners
Vibration
title Acoustic metamaterial design for noise reduction in vacuum cleaner
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T11%3A08%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acoustic%20metamaterial%20design%20for%20noise%20reduction%20in%20vacuum%20cleaner&rft.jtitle=Journal%20of%20mechanical%20science%20and%20technology&rft.au=An,%20Ki%20Yong&rft.date=2022-11-01&rft.volume=36&rft.issue=11&rft.spage=5353&rft.epage=5362&rft.pages=5353-5362&rft.issn=1738-494X&rft.eissn=1976-3824&rft_id=info:doi/10.1007/s12206-022-1002-0&rft_dat=%3Cproquest_cross%3E2736326032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736326032&rft_id=info:pmid/&rfr_iscdi=true