Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation

Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studia geophysica et geodaetica 2022-10, Vol.66 (3-4), p.145-161
Hauptverfasser: Ren, Zhiming, Wei, Zhefeng, Zhu, Chenghong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 161
container_issue 3-4
container_start_page 145
container_title Studia geophysica et geodaetica
container_volume 66
creator Ren, Zhiming
Wei, Zhefeng
Zhu, Chenghong
description Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational efficiency, most of pseudo-acoustic wave equations (PWEs) inevitably encounter SV-wave artifacts or instability for anisotropic modeling and imaging. To improve the anisotropic RTM quality, we develop a combination of optimal pure acoustic wave and complex wavefield separation to conduct anisotropic RTM for both surface and vertical seismic profiling (VSP) acquisition geometries. Among the proposed scheme, we derive an optimal pure acoustic wave dispersion relation, and solve the corresponding wave equation by incorporating finite-difference and Poisson solver. The modified equation can remove SV-wave artifacts and instability of PWEs. Wavefield separation approach can choose desired wavefield components along different directions to carry out the final imaging, which can effectively suppress low-frequency imaging noise. Moreover, the hybrid absorbing boundary condition is adopted to suppress artificial boundary reflections during wavefield extrapolation. Basic theory and modeling examples demonstrate that the developed schemes can generate RTM results with high accuracy.
doi_str_mv 10.1007/s11200-022-0717-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736324677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736324677</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2549-e527c5a6279f59a0ba776ea863b4b10c3d02904816aa5db0b322b79622eb2ffe3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hZ4mxY24ldH6uKl1QJJB5Xy0k2JVUbBzsp8O9xCRInTqsdzTerHULOOVxyAH0VORcADIRgoLlm5oBMeK4l40qoQzIBkIZJrswxOYlxDcC5kmpCVvO2ib4PvmtK-vr0SAPuMERkfbNFum1WwfWNb-lH079R3yXVbWg3BKQO_RD7RH24XdraipZ-223w80eoG9xUNGLnxoBTclS7TcSz3zklLzfXz4s7tny4vV_Ml8yJPDMMc6HL3CmhTZ0bB4XTWqGbKVlkBYdSViAMZDOunMurAgopRKGNEgILUdcop-RizO2Cfx8w9nbth9Cmk1ZoqaTIlNbJxUdXGXyMAWvbhfRZ-LIc7L5PO_ZpU59236c1iREjE5O3XWH4S_4f-gbT73k6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736324677</pqid></control><display><type>article</type><title>Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation</title><source>SpringerLink Journals</source><creator>Ren, Zhiming ; Wei, Zhefeng ; Zhu, Chenghong</creator><creatorcontrib>Ren, Zhiming ; Wei, Zhefeng ; Zhu, Chenghong</creatorcontrib><description>Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational efficiency, most of pseudo-acoustic wave equations (PWEs) inevitably encounter SV-wave artifacts or instability for anisotropic modeling and imaging. To improve the anisotropic RTM quality, we develop a combination of optimal pure acoustic wave and complex wavefield separation to conduct anisotropic RTM for both surface and vertical seismic profiling (VSP) acquisition geometries. Among the proposed scheme, we derive an optimal pure acoustic wave dispersion relation, and solve the corresponding wave equation by incorporating finite-difference and Poisson solver. The modified equation can remove SV-wave artifacts and instability of PWEs. Wavefield separation approach can choose desired wavefield components along different directions to carry out the final imaging, which can effectively suppress low-frequency imaging noise. Moreover, the hybrid absorbing boundary condition is adopted to suppress artificial boundary reflections during wavefield extrapolation. Basic theory and modeling examples demonstrate that the developed schemes can generate RTM results with high accuracy.</description><identifier>ISSN: 0039-3169</identifier><identifier>EISSN: 1573-1626</identifier><identifier>DOI: 10.1007/s11200-022-0717-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acoustic waves ; Acoustics ; Anisotropy ; Approximation ; Atmospheric Sciences ; Boundary conditions ; Computer applications ; Earth and Environmental Science ; Earth Sciences ; Finite difference method ; Geophysics/Geodesy ; Image resolution ; Imaging techniques ; Modelling ; Seismic stability ; Separation ; Sound dispersion ; Structural Geology ; Wave dispersion ; Wave equations</subject><ispartof>Studia geophysica et geodaetica, 2022-10, Vol.66 (3-4), p.145-161</ispartof><rights>Inst. Geophys. CAS, Prague 2022</rights><rights>Inst. Geophys. CAS, Prague 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2549-e527c5a6279f59a0ba776ea863b4b10c3d02904816aa5db0b322b79622eb2ffe3</citedby><cites>FETCH-LOGICAL-a2549-e527c5a6279f59a0ba776ea863b4b10c3d02904816aa5db0b322b79622eb2ffe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11200-022-0717-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11200-022-0717-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ren, Zhiming</creatorcontrib><creatorcontrib>Wei, Zhefeng</creatorcontrib><creatorcontrib>Zhu, Chenghong</creatorcontrib><title>Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation</title><title>Studia geophysica et geodaetica</title><addtitle>Stud Geophys Geod</addtitle><description>Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational efficiency, most of pseudo-acoustic wave equations (PWEs) inevitably encounter SV-wave artifacts or instability for anisotropic modeling and imaging. To improve the anisotropic RTM quality, we develop a combination of optimal pure acoustic wave and complex wavefield separation to conduct anisotropic RTM for both surface and vertical seismic profiling (VSP) acquisition geometries. Among the proposed scheme, we derive an optimal pure acoustic wave dispersion relation, and solve the corresponding wave equation by incorporating finite-difference and Poisson solver. The modified equation can remove SV-wave artifacts and instability of PWEs. Wavefield separation approach can choose desired wavefield components along different directions to carry out the final imaging, which can effectively suppress low-frequency imaging noise. Moreover, the hybrid absorbing boundary condition is adopted to suppress artificial boundary reflections during wavefield extrapolation. Basic theory and modeling examples demonstrate that the developed schemes can generate RTM results with high accuracy.</description><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Anisotropy</subject><subject>Approximation</subject><subject>Atmospheric Sciences</subject><subject>Boundary conditions</subject><subject>Computer applications</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Finite difference method</subject><subject>Geophysics/Geodesy</subject><subject>Image resolution</subject><subject>Imaging techniques</subject><subject>Modelling</subject><subject>Seismic stability</subject><subject>Separation</subject><subject>Sound dispersion</subject><subject>Structural Geology</subject><subject>Wave dispersion</subject><subject>Wave equations</subject><issn>0039-3169</issn><issn>1573-1626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqXwA7hZ4mxY24ldH6uKl1QJJB5Xy0k2JVUbBzsp8O9xCRInTqsdzTerHULOOVxyAH0VORcADIRgoLlm5oBMeK4l40qoQzIBkIZJrswxOYlxDcC5kmpCVvO2ib4PvmtK-vr0SAPuMERkfbNFum1WwfWNb-lH079R3yXVbWg3BKQO_RD7RH24XdraipZ-223w80eoG9xUNGLnxoBTclS7TcSz3zklLzfXz4s7tny4vV_Ml8yJPDMMc6HL3CmhTZ0bB4XTWqGbKVlkBYdSViAMZDOunMurAgopRKGNEgILUdcop-RizO2Cfx8w9nbth9Cmk1ZoqaTIlNbJxUdXGXyMAWvbhfRZ-LIc7L5PO_ZpU59236c1iREjE5O3XWH4S_4f-gbT73k6</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Ren, Zhiming</creator><creator>Wei, Zhefeng</creator><creator>Zhu, Chenghong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20221001</creationdate><title>Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation</title><author>Ren, Zhiming ; Wei, Zhefeng ; Zhu, Chenghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2549-e527c5a6279f59a0ba776ea863b4b10c3d02904816aa5db0b322b79622eb2ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Anisotropy</topic><topic>Approximation</topic><topic>Atmospheric Sciences</topic><topic>Boundary conditions</topic><topic>Computer applications</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Finite difference method</topic><topic>Geophysics/Geodesy</topic><topic>Image resolution</topic><topic>Imaging techniques</topic><topic>Modelling</topic><topic>Seismic stability</topic><topic>Separation</topic><topic>Sound dispersion</topic><topic>Structural Geology</topic><topic>Wave dispersion</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Zhiming</creatorcontrib><creatorcontrib>Wei, Zhefeng</creatorcontrib><creatorcontrib>Zhu, Chenghong</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Studia geophysica et geodaetica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Zhiming</au><au>Wei, Zhefeng</au><au>Zhu, Chenghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation</atitle><jtitle>Studia geophysica et geodaetica</jtitle><stitle>Stud Geophys Geod</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>66</volume><issue>3-4</issue><spage>145</spage><epage>161</epage><pages>145-161</pages><issn>0039-3169</issn><eissn>1573-1626</eissn><abstract>Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational efficiency, most of pseudo-acoustic wave equations (PWEs) inevitably encounter SV-wave artifacts or instability for anisotropic modeling and imaging. To improve the anisotropic RTM quality, we develop a combination of optimal pure acoustic wave and complex wavefield separation to conduct anisotropic RTM for both surface and vertical seismic profiling (VSP) acquisition geometries. Among the proposed scheme, we derive an optimal pure acoustic wave dispersion relation, and solve the corresponding wave equation by incorporating finite-difference and Poisson solver. The modified equation can remove SV-wave artifacts and instability of PWEs. Wavefield separation approach can choose desired wavefield components along different directions to carry out the final imaging, which can effectively suppress low-frequency imaging noise. Moreover, the hybrid absorbing boundary condition is adopted to suppress artificial boundary reflections during wavefield extrapolation. Basic theory and modeling examples demonstrate that the developed schemes can generate RTM results with high accuracy.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11200-022-0717-9</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-3169
ispartof Studia geophysica et geodaetica, 2022-10, Vol.66 (3-4), p.145-161
issn 0039-3169
1573-1626
language eng
recordid cdi_proquest_journals_2736324677
source SpringerLink Journals
subjects Acoustic waves
Acoustics
Anisotropy
Approximation
Atmospheric Sciences
Boundary conditions
Computer applications
Earth and Environmental Science
Earth Sciences
Finite difference method
Geophysics/Geodesy
Image resolution
Imaging techniques
Modelling
Seismic stability
Separation
Sound dispersion
Structural Geology
Wave dispersion
Wave equations
title Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20VSP%20reverse-time%20migration%20with%20optimal%20pure%20aeoustic%20wave%20and%20complex%20wavefield%20separation&rft.jtitle=Studia%20geophysica%20et%20geodaetica&rft.au=Ren,%20Zhiming&rft.date=2022-10-01&rft.volume=66&rft.issue=3-4&rft.spage=145&rft.epage=161&rft.pages=145-161&rft.issn=0039-3169&rft.eissn=1573-1626&rft_id=info:doi/10.1007/s11200-022-0717-9&rft_dat=%3Cproquest_cross%3E2736324677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736324677&rft_id=info:pmid/&rfr_iscdi=true