Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation
Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational effi...
Gespeichert in:
Veröffentlicht in: | Studia geophysica et geodaetica 2022-10, Vol.66 (3-4), p.145-161 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 161 |
---|---|
container_issue | 3-4 |
container_start_page | 145 |
container_title | Studia geophysica et geodaetica |
container_volume | 66 |
creator | Ren, Zhiming Wei, Zhefeng Zhu, Chenghong |
description | Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational efficiency, most of pseudo-acoustic wave equations (PWEs) inevitably encounter SV-wave artifacts or instability for anisotropic modeling and imaging. To improve the anisotropic RTM quality, we develop a combination of optimal pure acoustic wave and complex wavefield separation to conduct anisotropic RTM for both surface and vertical seismic profiling (VSP) acquisition geometries. Among the proposed scheme, we derive an optimal pure acoustic wave dispersion relation, and solve the corresponding wave equation by incorporating finite-difference and Poisson solver. The modified equation can remove SV-wave artifacts and instability of PWEs. Wavefield separation approach can choose desired wavefield components along different directions to carry out the final imaging, which can effectively suppress low-frequency imaging noise. Moreover, the hybrid absorbing boundary condition is adopted to suppress artificial boundary reflections during wavefield extrapolation. Basic theory and modeling examples demonstrate that the developed schemes can generate RTM results with high accuracy. |
doi_str_mv | 10.1007/s11200-022-0717-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736324677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736324677</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2549-e527c5a6279f59a0ba776ea863b4b10c3d02904816aa5db0b322b79622eb2ffe3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EEqXwA7hZ4mxY24ldH6uKl1QJJB5Xy0k2JVUbBzsp8O9xCRInTqsdzTerHULOOVxyAH0VORcADIRgoLlm5oBMeK4l40qoQzIBkIZJrswxOYlxDcC5kmpCVvO2ib4PvmtK-vr0SAPuMERkfbNFum1WwfWNb-lH079R3yXVbWg3BKQO_RD7RH24XdraipZ-223w80eoG9xUNGLnxoBTclS7TcSz3zklLzfXz4s7tny4vV_Ml8yJPDMMc6HL3CmhTZ0bB4XTWqGbKVlkBYdSViAMZDOunMurAgopRKGNEgILUdcop-RizO2Cfx8w9nbth9Cmk1ZoqaTIlNbJxUdXGXyMAWvbhfRZ-LIc7L5PO_ZpU59236c1iREjE5O3XWH4S_4f-gbT73k6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736324677</pqid></control><display><type>article</type><title>Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation</title><source>SpringerLink Journals</source><creator>Ren, Zhiming ; Wei, Zhefeng ; Zhu, Chenghong</creator><creatorcontrib>Ren, Zhiming ; Wei, Zhefeng ; Zhu, Chenghong</creatorcontrib><description>Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational efficiency, most of pseudo-acoustic wave equations (PWEs) inevitably encounter SV-wave artifacts or instability for anisotropic modeling and imaging. To improve the anisotropic RTM quality, we develop a combination of optimal pure acoustic wave and complex wavefield separation to conduct anisotropic RTM for both surface and vertical seismic profiling (VSP) acquisition geometries. Among the proposed scheme, we derive an optimal pure acoustic wave dispersion relation, and solve the corresponding wave equation by incorporating finite-difference and Poisson solver. The modified equation can remove SV-wave artifacts and instability of PWEs. Wavefield separation approach can choose desired wavefield components along different directions to carry out the final imaging, which can effectively suppress low-frequency imaging noise. Moreover, the hybrid absorbing boundary condition is adopted to suppress artificial boundary reflections during wavefield extrapolation. Basic theory and modeling examples demonstrate that the developed schemes can generate RTM results with high accuracy.</description><identifier>ISSN: 0039-3169</identifier><identifier>EISSN: 1573-1626</identifier><identifier>DOI: 10.1007/s11200-022-0717-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acoustic waves ; Acoustics ; Anisotropy ; Approximation ; Atmospheric Sciences ; Boundary conditions ; Computer applications ; Earth and Environmental Science ; Earth Sciences ; Finite difference method ; Geophysics/Geodesy ; Image resolution ; Imaging techniques ; Modelling ; Seismic stability ; Separation ; Sound dispersion ; Structural Geology ; Wave dispersion ; Wave equations</subject><ispartof>Studia geophysica et geodaetica, 2022-10, Vol.66 (3-4), p.145-161</ispartof><rights>Inst. Geophys. CAS, Prague 2022</rights><rights>Inst. Geophys. CAS, Prague 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a2549-e527c5a6279f59a0ba776ea863b4b10c3d02904816aa5db0b322b79622eb2ffe3</citedby><cites>FETCH-LOGICAL-a2549-e527c5a6279f59a0ba776ea863b4b10c3d02904816aa5db0b322b79622eb2ffe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11200-022-0717-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11200-022-0717-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ren, Zhiming</creatorcontrib><creatorcontrib>Wei, Zhefeng</creatorcontrib><creatorcontrib>Zhu, Chenghong</creatorcontrib><title>Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation</title><title>Studia geophysica et geodaetica</title><addtitle>Stud Geophys Geod</addtitle><description>Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational efficiency, most of pseudo-acoustic wave equations (PWEs) inevitably encounter SV-wave artifacts or instability for anisotropic modeling and imaging. To improve the anisotropic RTM quality, we develop a combination of optimal pure acoustic wave and complex wavefield separation to conduct anisotropic RTM for both surface and vertical seismic profiling (VSP) acquisition geometries. Among the proposed scheme, we derive an optimal pure acoustic wave dispersion relation, and solve the corresponding wave equation by incorporating finite-difference and Poisson solver. The modified equation can remove SV-wave artifacts and instability of PWEs. Wavefield separation approach can choose desired wavefield components along different directions to carry out the final imaging, which can effectively suppress low-frequency imaging noise. Moreover, the hybrid absorbing boundary condition is adopted to suppress artificial boundary reflections during wavefield extrapolation. Basic theory and modeling examples demonstrate that the developed schemes can generate RTM results with high accuracy.</description><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Anisotropy</subject><subject>Approximation</subject><subject>Atmospheric Sciences</subject><subject>Boundary conditions</subject><subject>Computer applications</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Finite difference method</subject><subject>Geophysics/Geodesy</subject><subject>Image resolution</subject><subject>Imaging techniques</subject><subject>Modelling</subject><subject>Seismic stability</subject><subject>Separation</subject><subject>Sound dispersion</subject><subject>Structural Geology</subject><subject>Wave dispersion</subject><subject>Wave equations</subject><issn>0039-3169</issn><issn>1573-1626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPwzAQhC0EEqXwA7hZ4mxY24ldH6uKl1QJJB5Xy0k2JVUbBzsp8O9xCRInTqsdzTerHULOOVxyAH0VORcADIRgoLlm5oBMeK4l40qoQzIBkIZJrswxOYlxDcC5kmpCVvO2ib4PvmtK-vr0SAPuMERkfbNFum1WwfWNb-lH079R3yXVbWg3BKQO_RD7RH24XdraipZ-223w80eoG9xUNGLnxoBTclS7TcSz3zklLzfXz4s7tny4vV_Ml8yJPDMMc6HL3CmhTZ0bB4XTWqGbKVlkBYdSViAMZDOunMurAgopRKGNEgILUdcop-RizO2Cfx8w9nbth9Cmk1ZoqaTIlNbJxUdXGXyMAWvbhfRZ-LIc7L5PO_ZpU59236c1iREjE5O3XWH4S_4f-gbT73k6</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Ren, Zhiming</creator><creator>Wei, Zhefeng</creator><creator>Zhu, Chenghong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20221001</creationdate><title>Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation</title><author>Ren, Zhiming ; Wei, Zhefeng ; Zhu, Chenghong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2549-e527c5a6279f59a0ba776ea863b4b10c3d02904816aa5db0b322b79622eb2ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Anisotropy</topic><topic>Approximation</topic><topic>Atmospheric Sciences</topic><topic>Boundary conditions</topic><topic>Computer applications</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Finite difference method</topic><topic>Geophysics/Geodesy</topic><topic>Image resolution</topic><topic>Imaging techniques</topic><topic>Modelling</topic><topic>Seismic stability</topic><topic>Separation</topic><topic>Sound dispersion</topic><topic>Structural Geology</topic><topic>Wave dispersion</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Zhiming</creatorcontrib><creatorcontrib>Wei, Zhefeng</creatorcontrib><creatorcontrib>Zhu, Chenghong</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Studia geophysica et geodaetica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Zhiming</au><au>Wei, Zhefeng</au><au>Zhu, Chenghong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation</atitle><jtitle>Studia geophysica et geodaetica</jtitle><stitle>Stud Geophys Geod</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>66</volume><issue>3-4</issue><spage>145</spage><epage>161</epage><pages>145-161</pages><issn>0039-3169</issn><eissn>1573-1626</eissn><abstract>Ignoring anisotropy characteristic of subsurface media may lead to misplaced images and low resolution of the target for the reverse-time migration (RTM). The mature anisotropic RTM methods are mainly based on the pseudoacoustic wave approximation. Although these schemes have high computational efficiency, most of pseudo-acoustic wave equations (PWEs) inevitably encounter SV-wave artifacts or instability for anisotropic modeling and imaging. To improve the anisotropic RTM quality, we develop a combination of optimal pure acoustic wave and complex wavefield separation to conduct anisotropic RTM for both surface and vertical seismic profiling (VSP) acquisition geometries. Among the proposed scheme, we derive an optimal pure acoustic wave dispersion relation, and solve the corresponding wave equation by incorporating finite-difference and Poisson solver. The modified equation can remove SV-wave artifacts and instability of PWEs. Wavefield separation approach can choose desired wavefield components along different directions to carry out the final imaging, which can effectively suppress low-frequency imaging noise. Moreover, the hybrid absorbing boundary condition is adopted to suppress artificial boundary reflections during wavefield extrapolation. Basic theory and modeling examples demonstrate that the developed schemes can generate RTM results with high accuracy.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11200-022-0717-9</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-3169 |
ispartof | Studia geophysica et geodaetica, 2022-10, Vol.66 (3-4), p.145-161 |
issn | 0039-3169 1573-1626 |
language | eng |
recordid | cdi_proquest_journals_2736324677 |
source | SpringerLink Journals |
subjects | Acoustic waves Acoustics Anisotropy Approximation Atmospheric Sciences Boundary conditions Computer applications Earth and Environmental Science Earth Sciences Finite difference method Geophysics/Geodesy Image resolution Imaging techniques Modelling Seismic stability Separation Sound dispersion Structural Geology Wave dispersion Wave equations |
title | Anisotropic VSP reverse-time migration with optimal pure aeoustic wave and complex wavefield separation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20VSP%20reverse-time%20migration%20with%20optimal%20pure%20aeoustic%20wave%20and%20complex%20wavefield%20separation&rft.jtitle=Studia%20geophysica%20et%20geodaetica&rft.au=Ren,%20Zhiming&rft.date=2022-10-01&rft.volume=66&rft.issue=3-4&rft.spage=145&rft.epage=161&rft.pages=145-161&rft.issn=0039-3169&rft.eissn=1573-1626&rft_id=info:doi/10.1007/s11200-022-0717-9&rft_dat=%3Cproquest_cross%3E2736324677%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736324677&rft_id=info:pmid/&rfr_iscdi=true |