Degeneration of natural Lagrangians and Prymian integrable systems
Starting from an anti-symplectic involution on a K3 surface, one can consider a natural Lagrangian subvariety inside the moduli space of sheaves over the K3. One can also construct a Prymian integrable system following a construction of Markushevich–Tikhomirov, extended by Arbarello–Saccà–Ferretti,...
Gespeichert in:
Veröffentlicht in: | Mathematische Zeitschrift 2022-12, Vol.302 (4), p.2469-2511 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2511 |
---|---|
container_issue | 4 |
container_start_page | 2469 |
container_title | Mathematische Zeitschrift |
container_volume | 302 |
creator | Franco, Emilio |
description | Starting from an anti-symplectic involution on a K3 surface, one can consider a natural Lagrangian subvariety inside the moduli space of sheaves over the K3. One can also construct a Prymian integrable system following a construction of Markushevich–Tikhomirov, extended by Arbarello–Saccà–Ferretti, Matteini and Sawon–Shen. In this article we address a question of Sawon, showing that these integrable systems and their associated natural Lagrangians degenerate, respectively, into fix loci of involutions considered by Heller–Schaposnik, García-Prada–Wilkin and Basu–García-Prada. Along the way we find interesting results such as the proof that the Donagi–Ein–Lazarsfeld degeneration is a degeneration of symplectic varieties, a generalization of this degeneration, originally described for K3 surfaces, to the case of an arbitrary smooth projective surface, and a description of the behaviour of certain involutions under this degeneration. |
doi_str_mv | 10.1007/s00209-022-03135-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2736324599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736324599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-ee4d76c7e729567c7b0624c6efbff3d0cf657b546dfa4c1aa78e40b2cd0d2fdb3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyRmA0ntmM3I5SrFAkGmC3HPo5StU6x06F9egxBYmM6-vVfjvQRclnCdQmgbhIAg5oCYxR4ySt6OCKzUnBGywXjx2SW_YpWCyVOyVlKK4BsKjEjd_fYYcBoxn4IxeCLYMZdNOuiMV00oetNSIUJrniL-00WRR9GzE67xiLt04ibdE5OvFknvPi9c_Lx-PC-fKbN69PL8rahlgkxUkThlLQKFasrqaxqQTJhJfrWe-7AelmpthLSeSNsaYxaoICWWQeOedfyObmadrdx-NxhGvVq2MWQX2qmuORMVHWdU2xK2TikFNHrbew3Ju51CfqblZ5Y6cxK_7DSh1ziUynlcOgw_k3_0_oCXN5uCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736324599</pqid></control><display><type>article</type><title>Degeneration of natural Lagrangians and Prymian integrable systems</title><source>SpringerLink Journals</source><creator>Franco, Emilio</creator><creatorcontrib>Franco, Emilio</creatorcontrib><description>Starting from an anti-symplectic involution on a K3 surface, one can consider a natural Lagrangian subvariety inside the moduli space of sheaves over the K3. One can also construct a Prymian integrable system following a construction of Markushevich–Tikhomirov, extended by Arbarello–Saccà–Ferretti, Matteini and Sawon–Shen. In this article we address a question of Sawon, showing that these integrable systems and their associated natural Lagrangians degenerate, respectively, into fix loci of involutions considered by Heller–Schaposnik, García-Prada–Wilkin and Basu–García-Prada. Along the way we find interesting results such as the proof that the Donagi–Ein–Lazarsfeld degeneration is a degeneration of symplectic varieties, a generalization of this degeneration, originally described for K3 surfaces, to the case of an arbitrary smooth projective surface, and a description of the behaviour of certain involutions under this degeneration.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-022-03135-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Degeneration ; Mathematics ; Mathematics and Statistics ; Sheaves</subject><ispartof>Mathematische Zeitschrift, 2022-12, Vol.302 (4), p.2469-2511</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-ee4d76c7e729567c7b0624c6efbff3d0cf657b546dfa4c1aa78e40b2cd0d2fdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00209-022-03135-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00209-022-03135-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Franco, Emilio</creatorcontrib><title>Degeneration of natural Lagrangians and Prymian integrable systems</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>Starting from an anti-symplectic involution on a K3 surface, one can consider a natural Lagrangian subvariety inside the moduli space of sheaves over the K3. One can also construct a Prymian integrable system following a construction of Markushevich–Tikhomirov, extended by Arbarello–Saccà–Ferretti, Matteini and Sawon–Shen. In this article we address a question of Sawon, showing that these integrable systems and their associated natural Lagrangians degenerate, respectively, into fix loci of involutions considered by Heller–Schaposnik, García-Prada–Wilkin and Basu–García-Prada. Along the way we find interesting results such as the proof that the Donagi–Ein–Lazarsfeld degeneration is a degeneration of symplectic varieties, a generalization of this degeneration, originally described for K3 surfaces, to the case of an arbitrary smooth projective surface, and a description of the behaviour of certain involutions under this degeneration.</description><subject>Degeneration</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Sheaves</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kLtOwzAUhi0EEqXwAkyRmA0ntmM3I5SrFAkGmC3HPo5StU6x06F9egxBYmM6-vVfjvQRclnCdQmgbhIAg5oCYxR4ySt6OCKzUnBGywXjx2SW_YpWCyVOyVlKK4BsKjEjd_fYYcBoxn4IxeCLYMZdNOuiMV00oetNSIUJrniL-00WRR9GzE67xiLt04ibdE5OvFknvPi9c_Lx-PC-fKbN69PL8rahlgkxUkThlLQKFasrqaxqQTJhJfrWe-7AelmpthLSeSNsaYxaoICWWQeOedfyObmadrdx-NxhGvVq2MWQX2qmuORMVHWdU2xK2TikFNHrbew3Ju51CfqblZ5Y6cxK_7DSh1ziUynlcOgw_k3_0_oCXN5uCg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Franco, Emilio</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221201</creationdate><title>Degeneration of natural Lagrangians and Prymian integrable systems</title><author>Franco, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-ee4d76c7e729567c7b0624c6efbff3d0cf657b546dfa4c1aa78e40b2cd0d2fdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Degeneration</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Sheaves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franco, Emilio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franco, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Degeneration of natural Lagrangians and Prymian integrable systems</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>302</volume><issue>4</issue><spage>2469</spage><epage>2511</epage><pages>2469-2511</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>Starting from an anti-symplectic involution on a K3 surface, one can consider a natural Lagrangian subvariety inside the moduli space of sheaves over the K3. One can also construct a Prymian integrable system following a construction of Markushevich–Tikhomirov, extended by Arbarello–Saccà–Ferretti, Matteini and Sawon–Shen. In this article we address a question of Sawon, showing that these integrable systems and their associated natural Lagrangians degenerate, respectively, into fix loci of involutions considered by Heller–Schaposnik, García-Prada–Wilkin and Basu–García-Prada. Along the way we find interesting results such as the proof that the Donagi–Ein–Lazarsfeld degeneration is a degeneration of symplectic varieties, a generalization of this degeneration, originally described for K3 surfaces, to the case of an arbitrary smooth projective surface, and a description of the behaviour of certain involutions under this degeneration.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-022-03135-z</doi><tpages>43</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5874 |
ispartof | Mathematische Zeitschrift, 2022-12, Vol.302 (4), p.2469-2511 |
issn | 0025-5874 1432-1823 |
language | eng |
recordid | cdi_proquest_journals_2736324599 |
source | SpringerLink Journals |
subjects | Degeneration Mathematics Mathematics and Statistics Sheaves |
title | Degeneration of natural Lagrangians and Prymian integrable systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Degeneration%20of%20natural%20Lagrangians%20and%20Prymian%20integrable%20systems&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Franco,%20Emilio&rft.date=2022-12-01&rft.volume=302&rft.issue=4&rft.spage=2469&rft.epage=2511&rft.pages=2469-2511&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-022-03135-z&rft_dat=%3Cproquest_cross%3E2736324599%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736324599&rft_id=info:pmid/&rfr_iscdi=true |