Remap, warp and attend: Non-parallel many-to-many accent conversion with Normalizing Flows
Regional accents of the same language affect not only how words are pronounced (i.e., phonetic content), but also impact prosodic aspects of speech such as speaking rate and intonation. This paper investigates a novel flow-based approach to accent conversion using normalizing flows. The proposed app...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ezzerg, Abdelhamid Merritt, Thomas Yanagisawa, Kayoko Bilinski, Piotr Proszewska, Magdalena Pokora, Kamil Renard Korzeniowski Barra-Chicote, Roberto Korzekwa, Daniel |
description | Regional accents of the same language affect not only how words are pronounced (i.e., phonetic content), but also impact prosodic aspects of speech such as speaking rate and intonation. This paper investigates a novel flow-based approach to accent conversion using normalizing flows. The proposed approach revolves around three steps: remapping the phonetic conditioning, to better match the target accent, warping the duration of the converted speech, to better suit the target phonemes, and an attention mechanism that implicitly aligns source and target speech sequences. The proposed remap-warp-attend system enables adaptation of both phonetic and prosodic aspects of speech while allowing for source and converted speech signals to be of different lengths. Objective and subjective evaluations show that the proposed approach significantly outperforms a competitive CopyCat baseline model in terms of similarity to the target accent, naturalness and intelligibility. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2736059880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736059880</sourcerecordid><originalsourceid>FETCH-proquest_journals_27360598803</originalsourceid><addsrcrecordid>eNqNi7sKwjAUQIMgWLT_cMHVQEzsQ1dRnBzEyaVc2qgt6U1NokW_XgU_wOkM55wBi6RSc54vpByx2PtGCCHTTCaJitjpoFvsZtCj6wCpAgxBU7WCvSXeoUNjtIEW6cmD5V8ClqWmAKWlh3a-tgR9Ha6fwbVo6ldNF9ga2_sJG57ReB3_OGbT7ea43vHO2dtd-1A09u7oowqZqVQkyzwX6r_qDf15Qpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736059880</pqid></control><display><type>article</type><title>Remap, warp and attend: Non-parallel many-to-many accent conversion with Normalizing Flows</title><source>Free E- Journals</source><creator>Ezzerg, Abdelhamid ; Merritt, Thomas ; Yanagisawa, Kayoko ; Bilinski, Piotr ; Proszewska, Magdalena ; Pokora, Kamil ; Renard Korzeniowski ; Barra-Chicote, Roberto ; Korzekwa, Daniel</creator><creatorcontrib>Ezzerg, Abdelhamid ; Merritt, Thomas ; Yanagisawa, Kayoko ; Bilinski, Piotr ; Proszewska, Magdalena ; Pokora, Kamil ; Renard Korzeniowski ; Barra-Chicote, Roberto ; Korzekwa, Daniel</creatorcontrib><description>Regional accents of the same language affect not only how words are pronounced (i.e., phonetic content), but also impact prosodic aspects of speech such as speaking rate and intonation. This paper investigates a novel flow-based approach to accent conversion using normalizing flows. The proposed approach revolves around three steps: remapping the phonetic conditioning, to better match the target accent, warping the duration of the converted speech, to better suit the target phonemes, and an attention mechanism that implicitly aligns source and target speech sequences. The proposed remap-warp-attend system enables adaptation of both phonetic and prosodic aspects of speech while allowing for source and converted speech signals to be of different lengths. Objective and subjective evaluations show that the proposed approach significantly outperforms a competitive CopyCat baseline model in terms of similarity to the target accent, naturalness and intelligibility.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conversion ; Intelligibility ; Linguistics ; Sequences ; Speech</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ezzerg, Abdelhamid</creatorcontrib><creatorcontrib>Merritt, Thomas</creatorcontrib><creatorcontrib>Yanagisawa, Kayoko</creatorcontrib><creatorcontrib>Bilinski, Piotr</creatorcontrib><creatorcontrib>Proszewska, Magdalena</creatorcontrib><creatorcontrib>Pokora, Kamil</creatorcontrib><creatorcontrib>Renard Korzeniowski</creatorcontrib><creatorcontrib>Barra-Chicote, Roberto</creatorcontrib><creatorcontrib>Korzekwa, Daniel</creatorcontrib><title>Remap, warp and attend: Non-parallel many-to-many accent conversion with Normalizing Flows</title><title>arXiv.org</title><description>Regional accents of the same language affect not only how words are pronounced (i.e., phonetic content), but also impact prosodic aspects of speech such as speaking rate and intonation. This paper investigates a novel flow-based approach to accent conversion using normalizing flows. The proposed approach revolves around three steps: remapping the phonetic conditioning, to better match the target accent, warping the duration of the converted speech, to better suit the target phonemes, and an attention mechanism that implicitly aligns source and target speech sequences. The proposed remap-warp-attend system enables adaptation of both phonetic and prosodic aspects of speech while allowing for source and converted speech signals to be of different lengths. Objective and subjective evaluations show that the proposed approach significantly outperforms a competitive CopyCat baseline model in terms of similarity to the target accent, naturalness and intelligibility.</description><subject>Conversion</subject><subject>Intelligibility</subject><subject>Linguistics</subject><subject>Sequences</subject><subject>Speech</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7sKwjAUQIMgWLT_cMHVQEzsQ1dRnBzEyaVc2qgt6U1NokW_XgU_wOkM55wBi6RSc54vpByx2PtGCCHTTCaJitjpoFvsZtCj6wCpAgxBU7WCvSXeoUNjtIEW6cmD5V8ClqWmAKWlh3a-tgR9Ha6fwbVo6ldNF9ga2_sJG57ReB3_OGbT7ea43vHO2dtd-1A09u7oowqZqVQkyzwX6r_qDf15Qpg</recordid><startdate>20221110</startdate><enddate>20221110</enddate><creator>Ezzerg, Abdelhamid</creator><creator>Merritt, Thomas</creator><creator>Yanagisawa, Kayoko</creator><creator>Bilinski, Piotr</creator><creator>Proszewska, Magdalena</creator><creator>Pokora, Kamil</creator><creator>Renard Korzeniowski</creator><creator>Barra-Chicote, Roberto</creator><creator>Korzekwa, Daniel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221110</creationdate><title>Remap, warp and attend: Non-parallel many-to-many accent conversion with Normalizing Flows</title><author>Ezzerg, Abdelhamid ; Merritt, Thomas ; Yanagisawa, Kayoko ; Bilinski, Piotr ; Proszewska, Magdalena ; Pokora, Kamil ; Renard Korzeniowski ; Barra-Chicote, Roberto ; Korzekwa, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27360598803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Conversion</topic><topic>Intelligibility</topic><topic>Linguistics</topic><topic>Sequences</topic><topic>Speech</topic><toplevel>online_resources</toplevel><creatorcontrib>Ezzerg, Abdelhamid</creatorcontrib><creatorcontrib>Merritt, Thomas</creatorcontrib><creatorcontrib>Yanagisawa, Kayoko</creatorcontrib><creatorcontrib>Bilinski, Piotr</creatorcontrib><creatorcontrib>Proszewska, Magdalena</creatorcontrib><creatorcontrib>Pokora, Kamil</creatorcontrib><creatorcontrib>Renard Korzeniowski</creatorcontrib><creatorcontrib>Barra-Chicote, Roberto</creatorcontrib><creatorcontrib>Korzekwa, Daniel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ezzerg, Abdelhamid</au><au>Merritt, Thomas</au><au>Yanagisawa, Kayoko</au><au>Bilinski, Piotr</au><au>Proszewska, Magdalena</au><au>Pokora, Kamil</au><au>Renard Korzeniowski</au><au>Barra-Chicote, Roberto</au><au>Korzekwa, Daniel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Remap, warp and attend: Non-parallel many-to-many accent conversion with Normalizing Flows</atitle><jtitle>arXiv.org</jtitle><date>2022-11-10</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Regional accents of the same language affect not only how words are pronounced (i.e., phonetic content), but also impact prosodic aspects of speech such as speaking rate and intonation. This paper investigates a novel flow-based approach to accent conversion using normalizing flows. The proposed approach revolves around three steps: remapping the phonetic conditioning, to better match the target accent, warping the duration of the converted speech, to better suit the target phonemes, and an attention mechanism that implicitly aligns source and target speech sequences. The proposed remap-warp-attend system enables adaptation of both phonetic and prosodic aspects of speech while allowing for source and converted speech signals to be of different lengths. Objective and subjective evaluations show that the proposed approach significantly outperforms a competitive CopyCat baseline model in terms of similarity to the target accent, naturalness and intelligibility.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2736059880 |
source | Free E- Journals |
subjects | Conversion Intelligibility Linguistics Sequences Speech |
title | Remap, warp and attend: Non-parallel many-to-many accent conversion with Normalizing Flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A09%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Remap,%20warp%20and%20attend:%20Non-parallel%20many-to-many%20accent%20conversion%20with%20Normalizing%20Flows&rft.jtitle=arXiv.org&rft.au=Ezzerg,%20Abdelhamid&rft.date=2022-11-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2736059880%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736059880&rft_id=info:pmid/&rfr_iscdi=true |