Managing equipment rentals: Unreliable fleet, impatient customers, and finite commitment capacity

In this paper, we discuss fleet size decisions of an equipment rental firm. The availability of the rental equipment depends on the fleet size of the firm and has a direct impact on its profitability. In our setting, we allow for partial backordering, reneging, and finite commitment capacity. Moreov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Production and operations management 2022-11, Vol.31 (11), p.3963-3981
Hauptverfasser: Firouz, Mohammad, Li, Linda, Keskin, Burcu B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3981
container_issue 11
container_start_page 3963
container_title Production and operations management
container_volume 31
creator Firouz, Mohammad
Li, Linda
Keskin, Burcu B.
description In this paper, we discuss fleet size decisions of an equipment rental firm. The availability of the rental equipment depends on the fleet size of the firm and has a direct impact on its profitability. In our setting, we allow for partial backordering, reneging, and finite commitment capacity. Moreover, we explicitly consider the breakdown possibility of the available equipment fleet. We develop an efficient recursive algorithm to solve the underlying two‐dimensional stochastic single‐player model. Our algorithm determines the global optimal fleet size of the firm for the same reneging and equipment return rates. Our extensive managerial insights quantify the behavior of various performance measures in the single‐player model with regard to repair performance of the firm, customer impatience level, traffic intensity, and equipment rental revenue. We demonstrate that by applying our model to a real case, there is a potential of more than a 4% (400,000 USD) increase in total daily profits. Extending our model to a two‐player game, we propose an approximation heuristic to derive closed‐form solutions to estimate equilibrium fleet sizes under complete information. Using our heuristic as the initial solution, we develop a simulation model to determine the exact equilibrium fleet sizes and draw a detailed comparison between the two‐player and single‐player models.
doi_str_mv 10.1111/poms.13796
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2735853507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1111_poms.13796</sage_id><sourcerecordid>2735853507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4276-d7837f70d09f77b98426a955775685b15cd8ba4d659c4b269a028dacf91bfe583</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsbnyDgQpBOTWYmk8SdFG_QUkG7DplMUlLm1mQG6dubdpRuxCySs_jynXN-AK4xmuJw7tum8lOcUJ6dgBHmCY0IJ9lpqBHhEU4pOwcX3m8QQjSJ0QjIhazl2tZrqLe9bStdd9CFS5b-Aa5qp0sr81JDU2rdTaCtWtnZPaR63zWVdn4CZV1AY2vbaaiaqrLdwaJkK5XtdpfgzASbvvp5x2D1_PQ5e43my5e32eM8UmlMs6igLKGGogJxQ2nOWRpnkhNCKckYyTFRBctlWmSEqzSPMy5RzAqpDMe50YQlY3AzeFvXbHvtO7FpeleHliKmCWEkIWHnMbgbKOUa7502onW2km4nMBL7CMU-QnGIMMBwgLVqauuPKIuzNAA8DQgekC9b6t0_MvG-XHz8am-HP16u9XHKPwb4BlfyjCk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735853507</pqid></control><display><type>article</type><title>Managing equipment rentals: Unreliable fleet, impatient customers, and finite commitment capacity</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>SAGE Complete A-Z List</source><creator>Firouz, Mohammad ; Li, Linda ; Keskin, Burcu B.</creator><creatorcontrib>Firouz, Mohammad ; Li, Linda ; Keskin, Burcu B.</creatorcontrib><description>In this paper, we discuss fleet size decisions of an equipment rental firm. The availability of the rental equipment depends on the fleet size of the firm and has a direct impact on its profitability. In our setting, we allow for partial backordering, reneging, and finite commitment capacity. Moreover, we explicitly consider the breakdown possibility of the available equipment fleet. We develop an efficient recursive algorithm to solve the underlying two‐dimensional stochastic single‐player model. Our algorithm determines the global optimal fleet size of the firm for the same reneging and equipment return rates. Our extensive managerial insights quantify the behavior of various performance measures in the single‐player model with regard to repair performance of the firm, customer impatience level, traffic intensity, and equipment rental revenue. We demonstrate that by applying our model to a real case, there is a potential of more than a 4% (400,000 USD) increase in total daily profits. Extending our model to a two‐player game, we propose an approximation heuristic to derive closed‐form solutions to estimate equilibrium fleet sizes under complete information. Using our heuristic as the initial solution, we develop a simulation model to determine the exact equilibrium fleet sizes and draw a detailed comparison between the two‐player and single‐player models.</description><identifier>ISSN: 1059-1478</identifier><identifier>EISSN: 1937-5956</identifier><identifier>DOI: 10.1111/poms.13796</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>breakdown ; market competition ; partial backordering ; reneging ; rental equipment ; Rentals ; two‐dimensional stochastic process</subject><ispartof>Production and operations management, 2022-11, Vol.31 (11), p.3963-3981</ispartof><rights>2022 The Authors</rights><rights>2022 Production and Operations Management Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4276-d7837f70d09f77b98426a955775685b15cd8ba4d659c4b269a028dacf91bfe583</citedby><cites>FETCH-LOGICAL-c4276-d7837f70d09f77b98426a955775685b15cd8ba4d659c4b269a028dacf91bfe583</cites><orcidid>0000-0002-2273-1002 ; 0000-0002-1480-8356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1111/poms.13796$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1111/poms.13796$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,1412,21800,27905,27906,43602,43603,45555,45556</link.rule.ids></links><search><creatorcontrib>Firouz, Mohammad</creatorcontrib><creatorcontrib>Li, Linda</creatorcontrib><creatorcontrib>Keskin, Burcu B.</creatorcontrib><title>Managing equipment rentals: Unreliable fleet, impatient customers, and finite commitment capacity</title><title>Production and operations management</title><description>In this paper, we discuss fleet size decisions of an equipment rental firm. The availability of the rental equipment depends on the fleet size of the firm and has a direct impact on its profitability. In our setting, we allow for partial backordering, reneging, and finite commitment capacity. Moreover, we explicitly consider the breakdown possibility of the available equipment fleet. We develop an efficient recursive algorithm to solve the underlying two‐dimensional stochastic single‐player model. Our algorithm determines the global optimal fleet size of the firm for the same reneging and equipment return rates. Our extensive managerial insights quantify the behavior of various performance measures in the single‐player model with regard to repair performance of the firm, customer impatience level, traffic intensity, and equipment rental revenue. We demonstrate that by applying our model to a real case, there is a potential of more than a 4% (400,000 USD) increase in total daily profits. Extending our model to a two‐player game, we propose an approximation heuristic to derive closed‐form solutions to estimate equilibrium fleet sizes under complete information. Using our heuristic as the initial solution, we develop a simulation model to determine the exact equilibrium fleet sizes and draw a detailed comparison between the two‐player and single‐player models.</description><subject>breakdown</subject><subject>market competition</subject><subject>partial backordering</subject><subject>reneging</subject><subject>rental equipment</subject><subject>Rentals</subject><subject>two‐dimensional stochastic process</subject><issn>1059-1478</issn><issn>1937-5956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsbnyDgQpBOTWYmk8SdFG_QUkG7DplMUlLm1mQG6dubdpRuxCySs_jynXN-AK4xmuJw7tum8lOcUJ6dgBHmCY0IJ9lpqBHhEU4pOwcX3m8QQjSJ0QjIhazl2tZrqLe9bStdd9CFS5b-Aa5qp0sr81JDU2rdTaCtWtnZPaR63zWVdn4CZV1AY2vbaaiaqrLdwaJkK5XtdpfgzASbvvp5x2D1_PQ5e43my5e32eM8UmlMs6igLKGGogJxQ2nOWRpnkhNCKckYyTFRBctlWmSEqzSPMy5RzAqpDMe50YQlY3AzeFvXbHvtO7FpeleHliKmCWEkIWHnMbgbKOUa7502onW2km4nMBL7CMU-QnGIMMBwgLVqauuPKIuzNAA8DQgekC9b6t0_MvG-XHz8am-HP16u9XHKPwb4BlfyjCk</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Firouz, Mohammad</creator><creator>Li, Linda</creator><creator>Keskin, Burcu B.</creator><general>SAGE Publications</general><general>Blackwell Publishers Inc</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2273-1002</orcidid><orcidid>https://orcid.org/0000-0002-1480-8356</orcidid></search><sort><creationdate>202211</creationdate><title>Managing equipment rentals: Unreliable fleet, impatient customers, and finite commitment capacity</title><author>Firouz, Mohammad ; Li, Linda ; Keskin, Burcu B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4276-d7837f70d09f77b98426a955775685b15cd8ba4d659c4b269a028dacf91bfe583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>breakdown</topic><topic>market competition</topic><topic>partial backordering</topic><topic>reneging</topic><topic>rental equipment</topic><topic>Rentals</topic><topic>two‐dimensional stochastic process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Firouz, Mohammad</creatorcontrib><creatorcontrib>Li, Linda</creatorcontrib><creatorcontrib>Keskin, Burcu B.</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><jtitle>Production and operations management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Firouz, Mohammad</au><au>Li, Linda</au><au>Keskin, Burcu B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Managing equipment rentals: Unreliable fleet, impatient customers, and finite commitment capacity</atitle><jtitle>Production and operations management</jtitle><date>2022-11</date><risdate>2022</risdate><volume>31</volume><issue>11</issue><spage>3963</spage><epage>3981</epage><pages>3963-3981</pages><issn>1059-1478</issn><eissn>1937-5956</eissn><abstract>In this paper, we discuss fleet size decisions of an equipment rental firm. The availability of the rental equipment depends on the fleet size of the firm and has a direct impact on its profitability. In our setting, we allow for partial backordering, reneging, and finite commitment capacity. Moreover, we explicitly consider the breakdown possibility of the available equipment fleet. We develop an efficient recursive algorithm to solve the underlying two‐dimensional stochastic single‐player model. Our algorithm determines the global optimal fleet size of the firm for the same reneging and equipment return rates. Our extensive managerial insights quantify the behavior of various performance measures in the single‐player model with regard to repair performance of the firm, customer impatience level, traffic intensity, and equipment rental revenue. We demonstrate that by applying our model to a real case, there is a potential of more than a 4% (400,000 USD) increase in total daily profits. Extending our model to a two‐player game, we propose an approximation heuristic to derive closed‐form solutions to estimate equilibrium fleet sizes under complete information. Using our heuristic as the initial solution, we develop a simulation model to determine the exact equilibrium fleet sizes and draw a detailed comparison between the two‐player and single‐player models.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.1111/poms.13796</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2273-1002</orcidid><orcidid>https://orcid.org/0000-0002-1480-8356</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1478
ispartof Production and operations management, 2022-11, Vol.31 (11), p.3963-3981
issn 1059-1478
1937-5956
language eng
recordid cdi_proquest_journals_2735853507
source Wiley Online Library Journals Frontfile Complete; Business Source Complete; SAGE Complete A-Z List
subjects breakdown
market competition
partial backordering
reneging
rental equipment
Rentals
two‐dimensional stochastic process
title Managing equipment rentals: Unreliable fleet, impatient customers, and finite commitment capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A36%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Managing%20equipment%20rentals:%20Unreliable%20fleet,%20impatient%20customers,%20and%20finite%20commitment%20capacity&rft.jtitle=Production%20and%20operations%20management&rft.au=Firouz,%20Mohammad&rft.date=2022-11&rft.volume=31&rft.issue=11&rft.spage=3963&rft.epage=3981&rft.pages=3963-3981&rft.issn=1059-1478&rft.eissn=1937-5956&rft_id=info:doi/10.1111/poms.13796&rft_dat=%3Cproquest_cross%3E2735853507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735853507&rft_id=info:pmid/&rft_sage_id=10.1111_poms.13796&rfr_iscdi=true