The Geometry of the G29-38 White Dwarf Dust Disk from Radiative Transfer Modeling

Many white dwarfs host disks of dust produced by disintegrating planetesimals and revealed by infrared excesses. The disk around G29-38 was the first to be discovered and is now well-observed, yet we lack a cohesive picture of its geometry and dust properties. Here we model the G29-38 disk for the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-11, Vol.939 (2), p.108
Hauptverfasser: Ballering, Nicholas P., Levens, Colette I., Su, Kate Y. L., Cleeves, L. Ilsedore
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 108
container_title The Astrophysical journal
container_volume 939
creator Ballering, Nicholas P.
Levens, Colette I.
Su, Kate Y. L.
Cleeves, L. Ilsedore
description Many white dwarfs host disks of dust produced by disintegrating planetesimals and revealed by infrared excesses. The disk around G29-38 was the first to be discovered and is now well-observed, yet we lack a cohesive picture of its geometry and dust properties. Here we model the G29-38 disk for the first time using radiative transfer calculations that account for radial and vertical temperature and optical depth gradients. We arrive at a set of models that can match the available infrared measurements well, although they overpredict the width of the 10 μ m silicate feature. The resulting set of models has a disk inner edge located at 92–100 R WD (where R WD is the white dwarf radius). This is farther from the star than inferred by previous modeling efforts due to the presence of a directly illuminated front edge to the disk. The radial width of the disk is narrow (≤10 R WD ); such a feature could be explained by inefficient spreading or the proximity of the tidal disruption radius to the sublimation radius. The models have a half-opening angle of ≥1.°4. Such structure would be in strong contradiction with the commonly employed flat-disk model analogous to the rings of Saturn, and in line with the vertical structure of main-sequence debris disks. Our results are consistent with the idea that disks are collisionally active and continuously fed with new material, rather than evolving passively after the disintegration of a single planetesimal.
doi_str_mv 10.3847/1538-4357/ac9a4a
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2735556216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735556216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-95768ef04a04ab3aa417b0e5a0394892a2e80f0c3a3443d1d4d979a29ce0b9933</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKfvPgbEN-vS3LRNHmWbU5iIMtG3cNcmrnNbatIp-_e2VPRFhAuXcznnXPgIOY3ZJUiRDeIEZCQgyQaYKxS4R3o_p33SY4yJKIXs5ZAchbBsJVeqRx5mC0Mnxq1N7XfUWVq3mqsIJH1elLWho0_0lo62oaajMrxR692aPmJRYl1-GDrzuAnWeHrnCrMqN6_H5MDiKpiT790nT9fj2fAmmt5PbodX0ygHyepIJVkqjWUCm5kDooizOTMJMlBCKo7cSGZZDghCQBEXolCZQq5yw-ZKAfTJWddbefe-NaHWS7f1m-al5hkkSZLyOG1crHPl3oXgjdWVL9fodzpmugWnW0q6paQ7cE3koouUrvrt_Md-_ocdq6VWoDRvglJXhYUvVTF5wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735556216</pqid></control><display><type>article</type><title>The Geometry of the G29-38 White Dwarf Dust Disk from Radiative Transfer Modeling</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ballering, Nicholas P. ; Levens, Colette I. ; Su, Kate Y. L. ; Cleeves, L. Ilsedore</creator><creatorcontrib>Ballering, Nicholas P. ; Levens, Colette I. ; Su, Kate Y. L. ; Cleeves, L. Ilsedore</creatorcontrib><description>Many white dwarfs host disks of dust produced by disintegrating planetesimals and revealed by infrared excesses. The disk around G29-38 was the first to be discovered and is now well-observed, yet we lack a cohesive picture of its geometry and dust properties. Here we model the G29-38 disk for the first time using radiative transfer calculations that account for radial and vertical temperature and optical depth gradients. We arrive at a set of models that can match the available infrared measurements well, although they overpredict the width of the 10 μ m silicate feature. The resulting set of models has a disk inner edge located at 92–100 R WD (where R WD is the white dwarf radius). This is farther from the star than inferred by previous modeling efforts due to the presence of a directly illuminated front edge to the disk. The radial width of the disk is narrow (≤10 R WD ); such a feature could be explained by inefficient spreading or the proximity of the tidal disruption radius to the sublimation radius. The models have a half-opening angle of ≥1.°4. Such structure would be in strong contradiction with the commonly employed flat-disk model analogous to the rings of Saturn, and in line with the vertical structure of main-sequence debris disks. Our results are consistent with the idea that disks are collisionally active and continuously fed with new material, rather than evolving passively after the disintegration of a single planetesimal.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac9a4a</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Circumstellar disks ; Disintegration ; Disks ; Dust ; Infrared excess ; Modelling ; Optical analysis ; Optical thickness ; Planet formation ; Radiative transfer ; Radiative transfer calculations ; Saturn rings ; Sublimation ; White dwarf stars</subject><ispartof>The Astrophysical journal, 2022-11, Vol.939 (2), p.108</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-95768ef04a04ab3aa417b0e5a0394892a2e80f0c3a3443d1d4d979a29ce0b9933</citedby><cites>FETCH-LOGICAL-c380t-95768ef04a04ab3aa417b0e5a0394892a2e80f0c3a3443d1d4d979a29ce0b9933</cites><orcidid>0000-0002-3532-5580 ; 0000-0003-2076-8001 ; 0000-0002-4276-3730</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac9a4a/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Ballering, Nicholas P.</creatorcontrib><creatorcontrib>Levens, Colette I.</creatorcontrib><creatorcontrib>Su, Kate Y. L.</creatorcontrib><creatorcontrib>Cleeves, L. Ilsedore</creatorcontrib><title>The Geometry of the G29-38 White Dwarf Dust Disk from Radiative Transfer Modeling</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Many white dwarfs host disks of dust produced by disintegrating planetesimals and revealed by infrared excesses. The disk around G29-38 was the first to be discovered and is now well-observed, yet we lack a cohesive picture of its geometry and dust properties. Here we model the G29-38 disk for the first time using radiative transfer calculations that account for radial and vertical temperature and optical depth gradients. We arrive at a set of models that can match the available infrared measurements well, although they overpredict the width of the 10 μ m silicate feature. The resulting set of models has a disk inner edge located at 92–100 R WD (where R WD is the white dwarf radius). This is farther from the star than inferred by previous modeling efforts due to the presence of a directly illuminated front edge to the disk. The radial width of the disk is narrow (≤10 R WD ); such a feature could be explained by inefficient spreading or the proximity of the tidal disruption radius to the sublimation radius. The models have a half-opening angle of ≥1.°4. Such structure would be in strong contradiction with the commonly employed flat-disk model analogous to the rings of Saturn, and in line with the vertical structure of main-sequence debris disks. Our results are consistent with the idea that disks are collisionally active and continuously fed with new material, rather than evolving passively after the disintegration of a single planetesimal.</description><subject>Astrophysics</subject><subject>Circumstellar disks</subject><subject>Disintegration</subject><subject>Disks</subject><subject>Dust</subject><subject>Infrared excess</subject><subject>Modelling</subject><subject>Optical analysis</subject><subject>Optical thickness</subject><subject>Planet formation</subject><subject>Radiative transfer</subject><subject>Radiative transfer calculations</subject><subject>Saturn rings</subject><subject>Sublimation</subject><subject>White dwarf stars</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kFFLwzAUhYMoOKfvPgbEN-vS3LRNHmWbU5iIMtG3cNcmrnNbatIp-_e2VPRFhAuXcznnXPgIOY3ZJUiRDeIEZCQgyQaYKxS4R3o_p33SY4yJKIXs5ZAchbBsJVeqRx5mC0Mnxq1N7XfUWVq3mqsIJH1elLWho0_0lo62oaajMrxR692aPmJRYl1-GDrzuAnWeHrnCrMqN6_H5MDiKpiT790nT9fj2fAmmt5PbodX0ygHyepIJVkqjWUCm5kDooizOTMJMlBCKo7cSGZZDghCQBEXolCZQq5yw-ZKAfTJWddbefe-NaHWS7f1m-al5hkkSZLyOG1crHPl3oXgjdWVL9fodzpmugWnW0q6paQ7cE3koouUrvrt_Md-_ocdq6VWoDRvglJXhYUvVTF5wA</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ballering, Nicholas P.</creator><creator>Levens, Colette I.</creator><creator>Su, Kate Y. L.</creator><creator>Cleeves, L. Ilsedore</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3532-5580</orcidid><orcidid>https://orcid.org/0000-0003-2076-8001</orcidid><orcidid>https://orcid.org/0000-0002-4276-3730</orcidid></search><sort><creationdate>20221101</creationdate><title>The Geometry of the G29-38 White Dwarf Dust Disk from Radiative Transfer Modeling</title><author>Ballering, Nicholas P. ; Levens, Colette I. ; Su, Kate Y. L. ; Cleeves, L. Ilsedore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-95768ef04a04ab3aa417b0e5a0394892a2e80f0c3a3443d1d4d979a29ce0b9933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Astrophysics</topic><topic>Circumstellar disks</topic><topic>Disintegration</topic><topic>Disks</topic><topic>Dust</topic><topic>Infrared excess</topic><topic>Modelling</topic><topic>Optical analysis</topic><topic>Optical thickness</topic><topic>Planet formation</topic><topic>Radiative transfer</topic><topic>Radiative transfer calculations</topic><topic>Saturn rings</topic><topic>Sublimation</topic><topic>White dwarf stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ballering, Nicholas P.</creatorcontrib><creatorcontrib>Levens, Colette I.</creatorcontrib><creatorcontrib>Su, Kate Y. L.</creatorcontrib><creatorcontrib>Cleeves, L. Ilsedore</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ballering, Nicholas P.</au><au>Levens, Colette I.</au><au>Su, Kate Y. L.</au><au>Cleeves, L. Ilsedore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Geometry of the G29-38 White Dwarf Dust Disk from Radiative Transfer Modeling</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-11-01</date><risdate>2022</risdate><volume>939</volume><issue>2</issue><spage>108</spage><pages>108-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Many white dwarfs host disks of dust produced by disintegrating planetesimals and revealed by infrared excesses. The disk around G29-38 was the first to be discovered and is now well-observed, yet we lack a cohesive picture of its geometry and dust properties. Here we model the G29-38 disk for the first time using radiative transfer calculations that account for radial and vertical temperature and optical depth gradients. We arrive at a set of models that can match the available infrared measurements well, although they overpredict the width of the 10 μ m silicate feature. The resulting set of models has a disk inner edge located at 92–100 R WD (where R WD is the white dwarf radius). This is farther from the star than inferred by previous modeling efforts due to the presence of a directly illuminated front edge to the disk. The radial width of the disk is narrow (≤10 R WD ); such a feature could be explained by inefficient spreading or the proximity of the tidal disruption radius to the sublimation radius. The models have a half-opening angle of ≥1.°4. Such structure would be in strong contradiction with the commonly employed flat-disk model analogous to the rings of Saturn, and in line with the vertical structure of main-sequence debris disks. Our results are consistent with the idea that disks are collisionally active and continuously fed with new material, rather than evolving passively after the disintegration of a single planetesimal.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac9a4a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3532-5580</orcidid><orcidid>https://orcid.org/0000-0003-2076-8001</orcidid><orcidid>https://orcid.org/0000-0002-4276-3730</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-11, Vol.939 (2), p.108
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2735556216
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Astrophysics
Circumstellar disks
Disintegration
Disks
Dust
Infrared excess
Modelling
Optical analysis
Optical thickness
Planet formation
Radiative transfer
Radiative transfer calculations
Saturn rings
Sublimation
White dwarf stars
title The Geometry of the G29-38 White Dwarf Dust Disk from Radiative Transfer Modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A12%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Geometry%20of%20the%20G29-38%20White%20Dwarf%20Dust%20Disk%20from%20Radiative%20Transfer%20Modeling&rft.jtitle=The%20Astrophysical%20journal&rft.au=Ballering,%20Nicholas%20P.&rft.date=2022-11-01&rft.volume=939&rft.issue=2&rft.spage=108&rft.pages=108-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac9a4a&rft_dat=%3Cproquest_iop_j%3E2735556216%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735556216&rft_id=info:pmid/&rfr_iscdi=true