An extensible architecture of 32-bit ALU for high-speed computing in QCA technology

The technological advancements in the semiconductor industry have significantly improved over the years. However, Complementary Metal Oxide Semiconductor (CMOS) technology has its fabrication limitations. This requires new methods and materials for computation at the nanometric level. Quantum-dot ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2022-12, Vol.78 (18), p.19605-19627
Hauptverfasser: Patidar, Nilesh, Gupta, Namit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19627
container_issue 18
container_start_page 19605
container_title The Journal of supercomputing
container_volume 78
creator Patidar, Nilesh
Gupta, Namit
description The technological advancements in the semiconductor industry have significantly improved over the years. However, Complementary Metal Oxide Semiconductor (CMOS) technology has its fabrication limitations. This requires new methods and materials for computation at the nanometric level. Quantum-dot cellular automata (QCA) is a revolutionary method that can sidestep CMOS’s practical limits. ALU being the key component in processor design must be optimized for high-speed processing and computation of data to meet the current requirements of portable gadgets. In this paper, a modular approach and extensible architecture for Arithmetic Logic Unit (ALU) design are proposed for high-speed computation. The design of the ALU is extended to perform the computation on multiple bits. The proposed design of the ALU performs 8 operations (four arithmetic, four logical) up to 32-bit computation. The architecture of ALU is made of modular blocks of XOR, XNOR, Adder, and Multiplexer instead of conventional gates. The QCA layout of the 32-bit ALU has 23,189 cells in a 62.68 µm 2 area with a delay of 34 clock cycles. The energy dissipation of a 32-bit ALU is 300 meV estimated using coherence vector energy simulation in QCA Designer-E. The delay of an N-bit ALU is calculated by the formula N + 2, which shows the delay efficiency of the proposed architecture of ALU design.
doi_str_mv 10.1007/s11227-022-04608-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2735548778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735548778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-422478960fdc00cd49bad3536331b68e81e67fcc10ae0be5ef69dafaacf35b743</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbR5t0WQZfMCCisw5pmrQdZtqatGD_vdUK7lxdDpzvXPgQuqZwSwHkXaSUMUmAMQIiBUWmE7SiieRzVOIUrSBjQFQi2Dm6iHEPAIJLvkJveYvd5-Da2BQHh02wdTM4O4zB4c5jzkjRDDjf7rDvAq6bqiaxd67Etjv249C0FW5a_LrJ8UzVbXfoqukSnXlziO7q967R7uH-ffNEti-Pz5t8SywT2UAEY0KqLAVfWgBbiqwwJU94yjktUuUUdan01lIwDgqXOJ9mpfHGWM-TQgq-RjfLbh-6j9HFQe-7MbTzS80kTxKhpFRziy0tG7oYg_O6D83RhElT0N_y9CJPz_L0jzw9zRBfoDiX28qFv-l_qC_cxXIl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735548778</pqid></control><display><type>article</type><title>An extensible architecture of 32-bit ALU for high-speed computing in QCA technology</title><source>SpringerLink Journals - AutoHoldings</source><creator>Patidar, Nilesh ; Gupta, Namit</creator><creatorcontrib>Patidar, Nilesh ; Gupta, Namit</creatorcontrib><description>The technological advancements in the semiconductor industry have significantly improved over the years. However, Complementary Metal Oxide Semiconductor (CMOS) technology has its fabrication limitations. This requires new methods and materials for computation at the nanometric level. Quantum-dot cellular automata (QCA) is a revolutionary method that can sidestep CMOS’s practical limits. ALU being the key component in processor design must be optimized for high-speed processing and computation of data to meet the current requirements of portable gadgets. In this paper, a modular approach and extensible architecture for Arithmetic Logic Unit (ALU) design are proposed for high-speed computation. The design of the ALU is extended to perform the computation on multiple bits. The proposed design of the ALU performs 8 operations (four arithmetic, four logical) up to 32-bit computation. The architecture of ALU is made of modular blocks of XOR, XNOR, Adder, and Multiplexer instead of conventional gates. The QCA layout of the 32-bit ALU has 23,189 cells in a 62.68 µm 2 area with a delay of 34 clock cycles. The energy dissipation of a 32-bit ALU is 300 meV estimated using coherence vector energy simulation in QCA Designer-E. The delay of an N-bit ALU is calculated by the formula N + 2, which shows the delay efficiency of the proposed architecture of ALU design.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-022-04608-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arithmetic and logic units ; Cellular automata ; CMOS ; Compilers ; Computation ; Computer Science ; Delay ; Design ; Design optimization ; Energy dissipation ; Extensibility ; High speed ; Interpreters ; Microprocessors ; Processor Architectures ; Programming Languages ; Quantum dots</subject><ispartof>The Journal of supercomputing, 2022-12, Vol.78 (18), p.19605-19627</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-422478960fdc00cd49bad3536331b68e81e67fcc10ae0be5ef69dafaacf35b743</citedby><cites>FETCH-LOGICAL-c249t-422478960fdc00cd49bad3536331b68e81e67fcc10ae0be5ef69dafaacf35b743</cites><orcidid>0000-0001-8712-5938 ; 0000-0001-6764-8467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-022-04608-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-022-04608-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Patidar, Nilesh</creatorcontrib><creatorcontrib>Gupta, Namit</creatorcontrib><title>An extensible architecture of 32-bit ALU for high-speed computing in QCA technology</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>The technological advancements in the semiconductor industry have significantly improved over the years. However, Complementary Metal Oxide Semiconductor (CMOS) technology has its fabrication limitations. This requires new methods and materials for computation at the nanometric level. Quantum-dot cellular automata (QCA) is a revolutionary method that can sidestep CMOS’s practical limits. ALU being the key component in processor design must be optimized for high-speed processing and computation of data to meet the current requirements of portable gadgets. In this paper, a modular approach and extensible architecture for Arithmetic Logic Unit (ALU) design are proposed for high-speed computation. The design of the ALU is extended to perform the computation on multiple bits. The proposed design of the ALU performs 8 operations (four arithmetic, four logical) up to 32-bit computation. The architecture of ALU is made of modular blocks of XOR, XNOR, Adder, and Multiplexer instead of conventional gates. The QCA layout of the 32-bit ALU has 23,189 cells in a 62.68 µm 2 area with a delay of 34 clock cycles. The energy dissipation of a 32-bit ALU is 300 meV estimated using coherence vector energy simulation in QCA Designer-E. The delay of an N-bit ALU is calculated by the formula N + 2, which shows the delay efficiency of the proposed architecture of ALU design.</description><subject>Arithmetic and logic units</subject><subject>Cellular automata</subject><subject>CMOS</subject><subject>Compilers</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Delay</subject><subject>Design</subject><subject>Design optimization</subject><subject>Energy dissipation</subject><subject>Extensibility</subject><subject>High speed</subject><subject>Interpreters</subject><subject>Microprocessors</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Quantum dots</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbR5t0WQZfMCCisw5pmrQdZtqatGD_vdUK7lxdDpzvXPgQuqZwSwHkXaSUMUmAMQIiBUWmE7SiieRzVOIUrSBjQFQi2Dm6iHEPAIJLvkJveYvd5-Da2BQHh02wdTM4O4zB4c5jzkjRDDjf7rDvAq6bqiaxd67Etjv249C0FW5a_LrJ8UzVbXfoqukSnXlziO7q967R7uH-ffNEti-Pz5t8SywT2UAEY0KqLAVfWgBbiqwwJU94yjktUuUUdan01lIwDgqXOJ9mpfHGWM-TQgq-RjfLbh-6j9HFQe-7MbTzS80kTxKhpFRziy0tG7oYg_O6D83RhElT0N_y9CJPz_L0jzw9zRBfoDiX28qFv-l_qC_cxXIl</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Patidar, Nilesh</creator><creator>Gupta, Namit</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8712-5938</orcidid><orcidid>https://orcid.org/0000-0001-6764-8467</orcidid></search><sort><creationdate>20221201</creationdate><title>An extensible architecture of 32-bit ALU for high-speed computing in QCA technology</title><author>Patidar, Nilesh ; Gupta, Namit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-422478960fdc00cd49bad3536331b68e81e67fcc10ae0be5ef69dafaacf35b743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arithmetic and logic units</topic><topic>Cellular automata</topic><topic>CMOS</topic><topic>Compilers</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Delay</topic><topic>Design</topic><topic>Design optimization</topic><topic>Energy dissipation</topic><topic>Extensibility</topic><topic>High speed</topic><topic>Interpreters</topic><topic>Microprocessors</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patidar, Nilesh</creatorcontrib><creatorcontrib>Gupta, Namit</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patidar, Nilesh</au><au>Gupta, Namit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extensible architecture of 32-bit ALU for high-speed computing in QCA technology</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>78</volume><issue>18</issue><spage>19605</spage><epage>19627</epage><pages>19605-19627</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>The technological advancements in the semiconductor industry have significantly improved over the years. However, Complementary Metal Oxide Semiconductor (CMOS) technology has its fabrication limitations. This requires new methods and materials for computation at the nanometric level. Quantum-dot cellular automata (QCA) is a revolutionary method that can sidestep CMOS’s practical limits. ALU being the key component in processor design must be optimized for high-speed processing and computation of data to meet the current requirements of portable gadgets. In this paper, a modular approach and extensible architecture for Arithmetic Logic Unit (ALU) design are proposed for high-speed computation. The design of the ALU is extended to perform the computation on multiple bits. The proposed design of the ALU performs 8 operations (four arithmetic, four logical) up to 32-bit computation. The architecture of ALU is made of modular blocks of XOR, XNOR, Adder, and Multiplexer instead of conventional gates. The QCA layout of the 32-bit ALU has 23,189 cells in a 62.68 µm 2 area with a delay of 34 clock cycles. The energy dissipation of a 32-bit ALU is 300 meV estimated using coherence vector energy simulation in QCA Designer-E. The delay of an N-bit ALU is calculated by the formula N + 2, which shows the delay efficiency of the proposed architecture of ALU design.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-022-04608-y</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-8712-5938</orcidid><orcidid>https://orcid.org/0000-0001-6764-8467</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2022-12, Vol.78 (18), p.19605-19627
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_2735548778
source SpringerLink Journals - AutoHoldings
subjects Arithmetic and logic units
Cellular automata
CMOS
Compilers
Computation
Computer Science
Delay
Design
Design optimization
Energy dissipation
Extensibility
High speed
Interpreters
Microprocessors
Processor Architectures
Programming Languages
Quantum dots
title An extensible architecture of 32-bit ALU for high-speed computing in QCA technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extensible%20architecture%20of%2032-bit%20ALU%20for%20high-speed%20computing%20in%20QCA%20technology&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Patidar,%20Nilesh&rft.date=2022-12-01&rft.volume=78&rft.issue=18&rft.spage=19605&rft.epage=19627&rft.pages=19605-19627&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-022-04608-y&rft_dat=%3Cproquest_cross%3E2735548778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735548778&rft_id=info:pmid/&rfr_iscdi=true