An extensible architecture of 32-bit ALU for high-speed computing in QCA technology
The technological advancements in the semiconductor industry have significantly improved over the years. However, Complementary Metal Oxide Semiconductor (CMOS) technology has its fabrication limitations. This requires new methods and materials for computation at the nanometric level. Quantum-dot ce...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2022-12, Vol.78 (18), p.19605-19627 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19627 |
---|---|
container_issue | 18 |
container_start_page | 19605 |
container_title | The Journal of supercomputing |
container_volume | 78 |
creator | Patidar, Nilesh Gupta, Namit |
description | The technological advancements in the semiconductor industry have significantly improved over the years. However, Complementary Metal Oxide Semiconductor (CMOS) technology has its fabrication limitations. This requires new methods and materials for computation at the nanometric level. Quantum-dot cellular automata (QCA) is a revolutionary method that can sidestep CMOS’s practical limits. ALU being the key component in processor design must be optimized for high-speed processing and computation of data to meet the current requirements of portable gadgets. In this paper, a modular approach and extensible architecture for Arithmetic Logic Unit (ALU) design are proposed for high-speed computation. The design of the ALU is extended to perform the computation on multiple bits. The proposed design of the ALU performs 8 operations (four arithmetic, four logical) up to 32-bit computation. The architecture of ALU is made of modular blocks of XOR, XNOR, Adder, and Multiplexer instead of conventional gates. The QCA layout of the 32-bit ALU has 23,189 cells in a 62.68 µm
2
area with a delay of 34 clock cycles. The energy dissipation of a 32-bit ALU is 300 meV estimated using coherence vector energy simulation in QCA Designer-E. The delay of an N-bit ALU is calculated by the formula N + 2, which shows the delay efficiency of the proposed architecture of ALU design. |
doi_str_mv | 10.1007/s11227-022-04608-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2735548778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2735548778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-422478960fdc00cd49bad3536331b68e81e67fcc10ae0be5ef69dafaacf35b743</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbR5t0WQZfMCCisw5pmrQdZtqatGD_vdUK7lxdDpzvXPgQuqZwSwHkXaSUMUmAMQIiBUWmE7SiieRzVOIUrSBjQFQi2Dm6iHEPAIJLvkJveYvd5-Da2BQHh02wdTM4O4zB4c5jzkjRDDjf7rDvAq6bqiaxd67Etjv249C0FW5a_LrJ8UzVbXfoqukSnXlziO7q967R7uH-ffNEti-Pz5t8SywT2UAEY0KqLAVfWgBbiqwwJU94yjktUuUUdan01lIwDgqXOJ9mpfHGWM-TQgq-RjfLbh-6j9HFQe-7MbTzS80kTxKhpFRziy0tG7oYg_O6D83RhElT0N_y9CJPz_L0jzw9zRBfoDiX28qFv-l_qC_cxXIl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735548778</pqid></control><display><type>article</type><title>An extensible architecture of 32-bit ALU for high-speed computing in QCA technology</title><source>SpringerLink Journals - AutoHoldings</source><creator>Patidar, Nilesh ; Gupta, Namit</creator><creatorcontrib>Patidar, Nilesh ; Gupta, Namit</creatorcontrib><description>The technological advancements in the semiconductor industry have significantly improved over the years. However, Complementary Metal Oxide Semiconductor (CMOS) technology has its fabrication limitations. This requires new methods and materials for computation at the nanometric level. Quantum-dot cellular automata (QCA) is a revolutionary method that can sidestep CMOS’s practical limits. ALU being the key component in processor design must be optimized for high-speed processing and computation of data to meet the current requirements of portable gadgets. In this paper, a modular approach and extensible architecture for Arithmetic Logic Unit (ALU) design are proposed for high-speed computation. The design of the ALU is extended to perform the computation on multiple bits. The proposed design of the ALU performs 8 operations (four arithmetic, four logical) up to 32-bit computation. The architecture of ALU is made of modular blocks of XOR, XNOR, Adder, and Multiplexer instead of conventional gates. The QCA layout of the 32-bit ALU has 23,189 cells in a 62.68 µm
2
area with a delay of 34 clock cycles. The energy dissipation of a 32-bit ALU is 300 meV estimated using coherence vector energy simulation in QCA Designer-E. The delay of an N-bit ALU is calculated by the formula N + 2, which shows the delay efficiency of the proposed architecture of ALU design.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-022-04608-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Arithmetic and logic units ; Cellular automata ; CMOS ; Compilers ; Computation ; Computer Science ; Delay ; Design ; Design optimization ; Energy dissipation ; Extensibility ; High speed ; Interpreters ; Microprocessors ; Processor Architectures ; Programming Languages ; Quantum dots</subject><ispartof>The Journal of supercomputing, 2022-12, Vol.78 (18), p.19605-19627</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-422478960fdc00cd49bad3536331b68e81e67fcc10ae0be5ef69dafaacf35b743</citedby><cites>FETCH-LOGICAL-c249t-422478960fdc00cd49bad3536331b68e81e67fcc10ae0be5ef69dafaacf35b743</cites><orcidid>0000-0001-8712-5938 ; 0000-0001-6764-8467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-022-04608-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-022-04608-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Patidar, Nilesh</creatorcontrib><creatorcontrib>Gupta, Namit</creatorcontrib><title>An extensible architecture of 32-bit ALU for high-speed computing in QCA technology</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>The technological advancements in the semiconductor industry have significantly improved over the years. However, Complementary Metal Oxide Semiconductor (CMOS) technology has its fabrication limitations. This requires new methods and materials for computation at the nanometric level. Quantum-dot cellular automata (QCA) is a revolutionary method that can sidestep CMOS’s practical limits. ALU being the key component in processor design must be optimized for high-speed processing and computation of data to meet the current requirements of portable gadgets. In this paper, a modular approach and extensible architecture for Arithmetic Logic Unit (ALU) design are proposed for high-speed computation. The design of the ALU is extended to perform the computation on multiple bits. The proposed design of the ALU performs 8 operations (four arithmetic, four logical) up to 32-bit computation. The architecture of ALU is made of modular blocks of XOR, XNOR, Adder, and Multiplexer instead of conventional gates. The QCA layout of the 32-bit ALU has 23,189 cells in a 62.68 µm
2
area with a delay of 34 clock cycles. The energy dissipation of a 32-bit ALU is 300 meV estimated using coherence vector energy simulation in QCA Designer-E. The delay of an N-bit ALU is calculated by the formula N + 2, which shows the delay efficiency of the proposed architecture of ALU design.</description><subject>Arithmetic and logic units</subject><subject>Cellular automata</subject><subject>CMOS</subject><subject>Compilers</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Delay</subject><subject>Design</subject><subject>Design optimization</subject><subject>Energy dissipation</subject><subject>Extensibility</subject><subject>High speed</subject><subject>Interpreters</subject><subject>Microprocessors</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Quantum dots</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbR5t0WQZfMCCisw5pmrQdZtqatGD_vdUK7lxdDpzvXPgQuqZwSwHkXaSUMUmAMQIiBUWmE7SiieRzVOIUrSBjQFQi2Dm6iHEPAIJLvkJveYvd5-Da2BQHh02wdTM4O4zB4c5jzkjRDDjf7rDvAq6bqiaxd67Etjv249C0FW5a_LrJ8UzVbXfoqukSnXlziO7q967R7uH-ffNEti-Pz5t8SywT2UAEY0KqLAVfWgBbiqwwJU94yjktUuUUdan01lIwDgqXOJ9mpfHGWM-TQgq-RjfLbh-6j9HFQe-7MbTzS80kTxKhpFRziy0tG7oYg_O6D83RhElT0N_y9CJPz_L0jzw9zRBfoDiX28qFv-l_qC_cxXIl</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Patidar, Nilesh</creator><creator>Gupta, Namit</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8712-5938</orcidid><orcidid>https://orcid.org/0000-0001-6764-8467</orcidid></search><sort><creationdate>20221201</creationdate><title>An extensible architecture of 32-bit ALU for high-speed computing in QCA technology</title><author>Patidar, Nilesh ; Gupta, Namit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-422478960fdc00cd49bad3536331b68e81e67fcc10ae0be5ef69dafaacf35b743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arithmetic and logic units</topic><topic>Cellular automata</topic><topic>CMOS</topic><topic>Compilers</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Delay</topic><topic>Design</topic><topic>Design optimization</topic><topic>Energy dissipation</topic><topic>Extensibility</topic><topic>High speed</topic><topic>Interpreters</topic><topic>Microprocessors</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Quantum dots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patidar, Nilesh</creatorcontrib><creatorcontrib>Gupta, Namit</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patidar, Nilesh</au><au>Gupta, Namit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extensible architecture of 32-bit ALU for high-speed computing in QCA technology</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>78</volume><issue>18</issue><spage>19605</spage><epage>19627</epage><pages>19605-19627</pages><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>The technological advancements in the semiconductor industry have significantly improved over the years. However, Complementary Metal Oxide Semiconductor (CMOS) technology has its fabrication limitations. This requires new methods and materials for computation at the nanometric level. Quantum-dot cellular automata (QCA) is a revolutionary method that can sidestep CMOS’s practical limits. ALU being the key component in processor design must be optimized for high-speed processing and computation of data to meet the current requirements of portable gadgets. In this paper, a modular approach and extensible architecture for Arithmetic Logic Unit (ALU) design are proposed for high-speed computation. The design of the ALU is extended to perform the computation on multiple bits. The proposed design of the ALU performs 8 operations (four arithmetic, four logical) up to 32-bit computation. The architecture of ALU is made of modular blocks of XOR, XNOR, Adder, and Multiplexer instead of conventional gates. The QCA layout of the 32-bit ALU has 23,189 cells in a 62.68 µm
2
area with a delay of 34 clock cycles. The energy dissipation of a 32-bit ALU is 300 meV estimated using coherence vector energy simulation in QCA Designer-E. The delay of an N-bit ALU is calculated by the formula N + 2, which shows the delay efficiency of the proposed architecture of ALU design.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-022-04608-y</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-8712-5938</orcidid><orcidid>https://orcid.org/0000-0001-6764-8467</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2022-12, Vol.78 (18), p.19605-19627 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_2735548778 |
source | SpringerLink Journals - AutoHoldings |
subjects | Arithmetic and logic units Cellular automata CMOS Compilers Computation Computer Science Delay Design Design optimization Energy dissipation Extensibility High speed Interpreters Microprocessors Processor Architectures Programming Languages Quantum dots |
title | An extensible architecture of 32-bit ALU for high-speed computing in QCA technology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T12%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extensible%20architecture%20of%2032-bit%20ALU%20for%20high-speed%20computing%20in%20QCA%20technology&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Patidar,%20Nilesh&rft.date=2022-12-01&rft.volume=78&rft.issue=18&rft.spage=19605&rft.epage=19627&rft.pages=19605-19627&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-022-04608-y&rft_dat=%3Cproquest_cross%3E2735548778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735548778&rft_id=info:pmid/&rfr_iscdi=true |