Hyperbolic Graph Attention Network

Graph neural network (GNN) has shown superior performance in dealing with structured graphs, which has attracted considerable research attention recently. Most of the existing GNNs are designed in euclidean spaces; however, real-world spatial structured data can be non-euclidean surfaces (e.g., hype...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on big data 2022-12, Vol.8 (6), p.1690-1701
Hauptverfasser: Zhang, Yiding, Wang, Xiao, Shi, Chuan, Jiang, Xunqiang, Ye, Yanfang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1701
container_issue 6
container_start_page 1690
container_title IEEE transactions on big data
container_volume 8
creator Zhang, Yiding
Wang, Xiao
Shi, Chuan
Jiang, Xunqiang
Ye, Yanfang
description Graph neural network (GNN) has shown superior performance in dealing with structured graphs, which has attracted considerable research attention recently. Most of the existing GNNs are designed in euclidean spaces; however, real-world spatial structured data can be non-euclidean surfaces (e.g., hyperbolic spaces). For example, biologists may inspect the geometric shape of a protein surface to determine its interaction with other biomolecules for drug discovery. Although there is growing research on generalizing GNNs to non-euclidean surfaces, the works in these fields are still scarce. In this article, we exploit the graph attention network to learn robust node representations of graphs in hyperbolic spaces. As the gyrovector space framework provides an elegant algebraic formalism for hyperbolic geometry, we utilize this framework to learn the graph representations in hyperbolic spaces. Specifically, we first use the operations defined in the framework to transform the features in a graph; and we exploit the proximity in the product of hyperbolic spaces to model the multi-head attention mechanism in the non-Euclidean setting; afterward, we further devise a parallel strategy using logarithmic and exponential maps to improve the efficiency of our proposed model. The comprehensive experimental results demonstrate the effectiveness of the proposed model, compared with state-of-the-art methods.
doi_str_mv 10.1109/TBDATA.2021.3081431
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2735381326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9435103</ieee_id><sourcerecordid>2735381326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-b7c79663339315360cbe03c4b611fb2bed98c55d983231398d0b1f113ec9b8023</originalsourceid><addsrcrecordid>eNo9kMFOg0AQhjdGE5vaJ-iF6Bmc2YFd9ojVtiaNXvC8YbdLpFbAhcb07YXQeJl_Dv83k3yMLREiRFCP-dNzlmcRB44RQYox4RWbcZI85KDE9bgTD6VUcMsWXXcAABQApPiM3W_PrfOmOVY22Pii_Qyyvnd1XzV18Ob638Z_3bGbsjh2bnHJOftYv-Srbbh737yusl1oKZZ9aKSVSggiUoQJCbDGAdnYCMTScOP2KrVJMkzihKTSPRgsEclZZVLgNGcP093WNz8n1_X60Jx8PbzUXFJCKRIXQ4umlvVN13lX6tZX34U_awQ9-tCTDz360BcfA7WcqMo590-omBIEoj-yJVkT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735381326</pqid></control><display><type>article</type><title>Hyperbolic Graph Attention Network</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Yiding ; Wang, Xiao ; Shi, Chuan ; Jiang, Xunqiang ; Ye, Yanfang</creator><creatorcontrib>Zhang, Yiding ; Wang, Xiao ; Shi, Chuan ; Jiang, Xunqiang ; Ye, Yanfang</creatorcontrib><description>Graph neural network (GNN) has shown superior performance in dealing with structured graphs, which has attracted considerable research attention recently. Most of the existing GNNs are designed in euclidean spaces; however, real-world spatial structured data can be non-euclidean surfaces (e.g., hyperbolic spaces). For example, biologists may inspect the geometric shape of a protein surface to determine its interaction with other biomolecules for drug discovery. Although there is growing research on generalizing GNNs to non-euclidean surfaces, the works in these fields are still scarce. In this article, we exploit the graph attention network to learn robust node representations of graphs in hyperbolic spaces. As the gyrovector space framework provides an elegant algebraic formalism for hyperbolic geometry, we utilize this framework to learn the graph representations in hyperbolic spaces. Specifically, we first use the operations defined in the framework to transform the features in a graph; and we exploit the proximity in the product of hyperbolic spaces to model the multi-head attention mechanism in the non-Euclidean setting; afterward, we further devise a parallel strategy using logarithmic and exponential maps to improve the efficiency of our proposed model. The comprehensive experimental results demonstrate the effectiveness of the proposed model, compared with state-of-the-art methods.</description><identifier>ISSN: 2332-7790</identifier><identifier>EISSN: 2372-2096</identifier><identifier>DOI: 10.1109/TBDATA.2021.3081431</identifier><identifier>CODEN: ITBDAX</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological system modeling ; Biomolecules ; Convolution ; Data models ; Deep learning ; Geometry ; graph neural network ; Graph neural networks ; Graph representations ; Graphical representations ; Graphs ; hyperbolic space ; Recommender systems ; representation learning ; Social networking (online) ; Structured data</subject><ispartof>IEEE transactions on big data, 2022-12, Vol.8 (6), p.1690-1701</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-b7c79663339315360cbe03c4b611fb2bed98c55d983231398d0b1f113ec9b8023</citedby><cites>FETCH-LOGICAL-c347t-b7c79663339315360cbe03c4b611fb2bed98c55d983231398d0b1f113ec9b8023</cites><orcidid>0000-0002-3734-0266 ; 0000-0001-9368-1818 ; 0000-0002-4444-7811 ; 0000-0002-6038-2173</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9435103$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9435103$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Yiding</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Shi, Chuan</creatorcontrib><creatorcontrib>Jiang, Xunqiang</creatorcontrib><creatorcontrib>Ye, Yanfang</creatorcontrib><title>Hyperbolic Graph Attention Network</title><title>IEEE transactions on big data</title><addtitle>TBData</addtitle><description>Graph neural network (GNN) has shown superior performance in dealing with structured graphs, which has attracted considerable research attention recently. Most of the existing GNNs are designed in euclidean spaces; however, real-world spatial structured data can be non-euclidean surfaces (e.g., hyperbolic spaces). For example, biologists may inspect the geometric shape of a protein surface to determine its interaction with other biomolecules for drug discovery. Although there is growing research on generalizing GNNs to non-euclidean surfaces, the works in these fields are still scarce. In this article, we exploit the graph attention network to learn robust node representations of graphs in hyperbolic spaces. As the gyrovector space framework provides an elegant algebraic formalism for hyperbolic geometry, we utilize this framework to learn the graph representations in hyperbolic spaces. Specifically, we first use the operations defined in the framework to transform the features in a graph; and we exploit the proximity in the product of hyperbolic spaces to model the multi-head attention mechanism in the non-Euclidean setting; afterward, we further devise a parallel strategy using logarithmic and exponential maps to improve the efficiency of our proposed model. The comprehensive experimental results demonstrate the effectiveness of the proposed model, compared with state-of-the-art methods.</description><subject>Biological system modeling</subject><subject>Biomolecules</subject><subject>Convolution</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Geometry</subject><subject>graph neural network</subject><subject>Graph neural networks</subject><subject>Graph representations</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>hyperbolic space</subject><subject>Recommender systems</subject><subject>representation learning</subject><subject>Social networking (online)</subject><subject>Structured data</subject><issn>2332-7790</issn><issn>2372-2096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOg0AQhjdGE5vaJ-iF6Bmc2YFd9ojVtiaNXvC8YbdLpFbAhcb07YXQeJl_Dv83k3yMLREiRFCP-dNzlmcRB44RQYox4RWbcZI85KDE9bgTD6VUcMsWXXcAABQApPiM3W_PrfOmOVY22Pii_Qyyvnd1XzV18Ob638Z_3bGbsjh2bnHJOftYv-Srbbh737yusl1oKZZ9aKSVSggiUoQJCbDGAdnYCMTScOP2KrVJMkzihKTSPRgsEclZZVLgNGcP093WNz8n1_X60Jx8PbzUXFJCKRIXQ4umlvVN13lX6tZX34U_awQ9-tCTDz360BcfA7WcqMo590-omBIEoj-yJVkT</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Zhang, Yiding</creator><creator>Wang, Xiao</creator><creator>Shi, Chuan</creator><creator>Jiang, Xunqiang</creator><creator>Ye, Yanfang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3734-0266</orcidid><orcidid>https://orcid.org/0000-0001-9368-1818</orcidid><orcidid>https://orcid.org/0000-0002-4444-7811</orcidid><orcidid>https://orcid.org/0000-0002-6038-2173</orcidid></search><sort><creationdate>20221201</creationdate><title>Hyperbolic Graph Attention Network</title><author>Zhang, Yiding ; Wang, Xiao ; Shi, Chuan ; Jiang, Xunqiang ; Ye, Yanfang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-b7c79663339315360cbe03c4b611fb2bed98c55d983231398d0b1f113ec9b8023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological system modeling</topic><topic>Biomolecules</topic><topic>Convolution</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Geometry</topic><topic>graph neural network</topic><topic>Graph neural networks</topic><topic>Graph representations</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>hyperbolic space</topic><topic>Recommender systems</topic><topic>representation learning</topic><topic>Social networking (online)</topic><topic>Structured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yiding</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Shi, Chuan</creatorcontrib><creatorcontrib>Jiang, Xunqiang</creatorcontrib><creatorcontrib>Ye, Yanfang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on big data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Yiding</au><au>Wang, Xiao</au><au>Shi, Chuan</au><au>Jiang, Xunqiang</au><au>Ye, Yanfang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hyperbolic Graph Attention Network</atitle><jtitle>IEEE transactions on big data</jtitle><stitle>TBData</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>8</volume><issue>6</issue><spage>1690</spage><epage>1701</epage><pages>1690-1701</pages><issn>2332-7790</issn><eissn>2372-2096</eissn><coden>ITBDAX</coden><abstract>Graph neural network (GNN) has shown superior performance in dealing with structured graphs, which has attracted considerable research attention recently. Most of the existing GNNs are designed in euclidean spaces; however, real-world spatial structured data can be non-euclidean surfaces (e.g., hyperbolic spaces). For example, biologists may inspect the geometric shape of a protein surface to determine its interaction with other biomolecules for drug discovery. Although there is growing research on generalizing GNNs to non-euclidean surfaces, the works in these fields are still scarce. In this article, we exploit the graph attention network to learn robust node representations of graphs in hyperbolic spaces. As the gyrovector space framework provides an elegant algebraic formalism for hyperbolic geometry, we utilize this framework to learn the graph representations in hyperbolic spaces. Specifically, we first use the operations defined in the framework to transform the features in a graph; and we exploit the proximity in the product of hyperbolic spaces to model the multi-head attention mechanism in the non-Euclidean setting; afterward, we further devise a parallel strategy using logarithmic and exponential maps to improve the efficiency of our proposed model. The comprehensive experimental results demonstrate the effectiveness of the proposed model, compared with state-of-the-art methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TBDATA.2021.3081431</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3734-0266</orcidid><orcidid>https://orcid.org/0000-0001-9368-1818</orcidid><orcidid>https://orcid.org/0000-0002-4444-7811</orcidid><orcidid>https://orcid.org/0000-0002-6038-2173</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2332-7790
ispartof IEEE transactions on big data, 2022-12, Vol.8 (6), p.1690-1701
issn 2332-7790
2372-2096
language eng
recordid cdi_proquest_journals_2735381326
source IEEE Electronic Library (IEL)
subjects Biological system modeling
Biomolecules
Convolution
Data models
Deep learning
Geometry
graph neural network
Graph neural networks
Graph representations
Graphical representations
Graphs
hyperbolic space
Recommender systems
representation learning
Social networking (online)
Structured data
title Hyperbolic Graph Attention Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A07%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hyperbolic%20Graph%20Attention%20Network&rft.jtitle=IEEE%20transactions%20on%20big%20data&rft.au=Zhang,%20Yiding&rft.date=2022-12-01&rft.volume=8&rft.issue=6&rft.spage=1690&rft.epage=1701&rft.pages=1690-1701&rft.issn=2332-7790&rft.eissn=2372-2096&rft.coden=ITBDAX&rft_id=info:doi/10.1109/TBDATA.2021.3081431&rft_dat=%3Cproquest_RIE%3E2735381326%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735381326&rft_id=info:pmid/&rft_ieee_id=9435103&rfr_iscdi=true