Instance Switching-based Contrastive Learning for Fine-grained Airplane Detection

Detecting airplanes from high-resolution remote sensing images has a variety of applications. The characteristics of clear details, rich spatial and texture information of objects in high-resolution remote sensing images make it possible to identify different types of airplanes from backgrounds. How...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-1
Hauptverfasser: Zeng, Lanxin, Guo, Haowen, Yang, Wen, Yu, Huai, Yu, Lei, Zhang, Peng, Zou, Tongyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Zeng, Lanxin
Guo, Haowen
Yang, Wen
Yu, Huai
Yu, Lei
Zhang, Peng
Zou, Tongyuan
description Detecting airplanes from high-resolution remote sensing images has a variety of applications. The characteristics of clear details, rich spatial and texture information of objects in high-resolution remote sensing images make it possible to identify different types of airplanes from backgrounds. However, airplanes usually exhibit slight inter-class discrepancy and unbalanced class distribution, which pose significant challenges to fine-grained detection of airplanes. In this paper, we propose the ISCL, an Instance Switching-based Contrastive Learning method for fine-grained airplane detection. Specifically, we introduce a Contrastive Learning-based Module (CLM) to widen the inter-class distance while narrowing the intra-class distance by optimizing feature space distribution with the InfoNCE + loss, which is built on a serial head in a cascaded way. Then, we design a Refined Instance Switching (ReIS) module to alleviate the class imbalance problem. To take full advantage of the CLM and ReIS, we further introduce an optimization strategy which is an organic combination of the two modules to widen the distances of different airplane categories that are easily confused. In addition, we contribute a fine-grained attribute-assisted dataset, dubbed GF-RarePlanes Dataset (GRD), to help the detectors better learn the subtle differences between the airplanes. Extensive experiments on two datasets ( i.e ., GF and FAIR1M) demonstrate that our proposed method can significantly improve the accuracy of fine-grained airplane detection under both HBB and OBB scenarios. Dataset and codes will be available at https://lanxin1011.github.io/ISCL/.
doi_str_mv 10.1109/TGRS.2022.3218533
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2735380437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9933796</ieee_id><sourcerecordid>2735380437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b1eebc4e4a5abab9437291786de9e48a1bd92269618230d63da2e9f2fd59dedd3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwEXE_N50yyLNXWQkG0dR0ykzc1pWZqkir-e6e0uLqLd-59cBC6pWREKdEPq9nbcsQIYyPOqJKcn6EBlVIVpBTiHA0I1WXBlGaX6CqlDSFUSFoN0Os8pGxDA3j543Pz4cO6qG0ChyddyNGm7L8BL8DG0J9w20U89QGKdbR9ODz2cbe1AfAjZGiy78I1umjtNsHNKYfoffq0mjwXi5fZfDJeFA3TPBc1BagbAcJKW9taC14xTStVOtAglKW104yVuqSKceJK7iwD3bLWSe3AOT5E98fdXey-9pCy2XT7GPqXhlVcckX6yZ6iR6qJXUoRWrOL_tPGX0OJOZgzB3PmYM6czPWdu2PHA8A_rzXnlS75H0ocas8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735380437</pqid></control><display><type>article</type><title>Instance Switching-based Contrastive Learning for Fine-grained Airplane Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Zeng, Lanxin ; Guo, Haowen ; Yang, Wen ; Yu, Huai ; Yu, Lei ; Zhang, Peng ; Zou, Tongyuan</creator><creatorcontrib>Zeng, Lanxin ; Guo, Haowen ; Yang, Wen ; Yu, Huai ; Yu, Lei ; Zhang, Peng ; Zou, Tongyuan</creatorcontrib><description>Detecting airplanes from high-resolution remote sensing images has a variety of applications. The characteristics of clear details, rich spatial and texture information of objects in high-resolution remote sensing images make it possible to identify different types of airplanes from backgrounds. However, airplanes usually exhibit slight inter-class discrepancy and unbalanced class distribution, which pose significant challenges to fine-grained detection of airplanes. In this paper, we propose the ISCL, an Instance Switching-based Contrastive Learning method for fine-grained airplane detection. Specifically, we introduce a Contrastive Learning-based Module (CLM) to widen the inter-class distance while narrowing the intra-class distance by optimizing feature space distribution with the InfoNCE + loss, which is built on a serial head in a cascaded way. Then, we design a Refined Instance Switching (ReIS) module to alleviate the class imbalance problem. To take full advantage of the CLM and ReIS, we further introduce an optimization strategy which is an organic combination of the two modules to widen the distances of different airplane categories that are easily confused. In addition, we contribute a fine-grained attribute-assisted dataset, dubbed GF-RarePlanes Dataset (GRD), to help the detectors better learn the subtle differences between the airplanes. Extensive experiments on two datasets ( i.e ., GF and FAIR1M) demonstrate that our proposed method can significantly improve the accuracy of fine-grained airplane detection under both HBB and OBB scenarios. Dataset and codes will be available at https://lanxin1011.github.io/ISCL/.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3218533</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft ; airplane detection ; Airplanes ; class imbalance ; Datasets ; Detection ; Detectors ; Distance ; Distribution ; fine-grained detection ; High resolution ; Image resolution ; Learning ; Modules ; Object detection ; Object recognition ; Optimization ; Proposals ; Remote sensing ; Remote sensing images ; Resolution ; Switches ; Switching ; Task analysis</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b1eebc4e4a5abab9437291786de9e48a1bd92269618230d63da2e9f2fd59dedd3</citedby><cites>FETCH-LOGICAL-c293t-b1eebc4e4a5abab9437291786de9e48a1bd92269618230d63da2e9f2fd59dedd3</cites><orcidid>0000-0002-3263-8768 ; 0000-0003-2328-642X ; 0000-0001-6043-3412 ; 0000-0002-5381-3991 ; 0000-0002-7329-4631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9933796$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9933796$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng, Lanxin</creatorcontrib><creatorcontrib>Guo, Haowen</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Yu, Huai</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zou, Tongyuan</creatorcontrib><title>Instance Switching-based Contrastive Learning for Fine-grained Airplane Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Detecting airplanes from high-resolution remote sensing images has a variety of applications. The characteristics of clear details, rich spatial and texture information of objects in high-resolution remote sensing images make it possible to identify different types of airplanes from backgrounds. However, airplanes usually exhibit slight inter-class discrepancy and unbalanced class distribution, which pose significant challenges to fine-grained detection of airplanes. In this paper, we propose the ISCL, an Instance Switching-based Contrastive Learning method for fine-grained airplane detection. Specifically, we introduce a Contrastive Learning-based Module (CLM) to widen the inter-class distance while narrowing the intra-class distance by optimizing feature space distribution with the InfoNCE + loss, which is built on a serial head in a cascaded way. Then, we design a Refined Instance Switching (ReIS) module to alleviate the class imbalance problem. To take full advantage of the CLM and ReIS, we further introduce an optimization strategy which is an organic combination of the two modules to widen the distances of different airplane categories that are easily confused. In addition, we contribute a fine-grained attribute-assisted dataset, dubbed GF-RarePlanes Dataset (GRD), to help the detectors better learn the subtle differences between the airplanes. Extensive experiments on two datasets ( i.e ., GF and FAIR1M) demonstrate that our proposed method can significantly improve the accuracy of fine-grained airplane detection under both HBB and OBB scenarios. Dataset and codes will be available at https://lanxin1011.github.io/ISCL/.</description><subject>Aircraft</subject><subject>airplane detection</subject><subject>Airplanes</subject><subject>class imbalance</subject><subject>Datasets</subject><subject>Detection</subject><subject>Detectors</subject><subject>Distance</subject><subject>Distribution</subject><subject>fine-grained detection</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>Learning</subject><subject>Modules</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Proposals</subject><subject>Remote sensing</subject><subject>Remote sensing images</subject><subject>Resolution</subject><subject>Switches</subject><subject>Switching</subject><subject>Task analysis</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKs_QNwEXE_N50yyLNXWQkG0dR0ykzc1pWZqkir-e6e0uLqLd-59cBC6pWREKdEPq9nbcsQIYyPOqJKcn6EBlVIVpBTiHA0I1WXBlGaX6CqlDSFUSFoN0Os8pGxDA3j543Pz4cO6qG0ChyddyNGm7L8BL8DG0J9w20U89QGKdbR9ODz2cbe1AfAjZGiy78I1umjtNsHNKYfoffq0mjwXi5fZfDJeFA3TPBc1BagbAcJKW9taC14xTStVOtAglKW104yVuqSKceJK7iwD3bLWSe3AOT5E98fdXey-9pCy2XT7GPqXhlVcckX6yZ6iR6qJXUoRWrOL_tPGX0OJOZgzB3PmYM6czPWdu2PHA8A_rzXnlS75H0ocas8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zeng, Lanxin</creator><creator>Guo, Haowen</creator><creator>Yang, Wen</creator><creator>Yu, Huai</creator><creator>Yu, Lei</creator><creator>Zhang, Peng</creator><creator>Zou, Tongyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3263-8768</orcidid><orcidid>https://orcid.org/0000-0003-2328-642X</orcidid><orcidid>https://orcid.org/0000-0001-6043-3412</orcidid><orcidid>https://orcid.org/0000-0002-5381-3991</orcidid><orcidid>https://orcid.org/0000-0002-7329-4631</orcidid></search><sort><creationdate>2022</creationdate><title>Instance Switching-based Contrastive Learning for Fine-grained Airplane Detection</title><author>Zeng, Lanxin ; Guo, Haowen ; Yang, Wen ; Yu, Huai ; Yu, Lei ; Zhang, Peng ; Zou, Tongyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b1eebc4e4a5abab9437291786de9e48a1bd92269618230d63da2e9f2fd59dedd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>airplane detection</topic><topic>Airplanes</topic><topic>class imbalance</topic><topic>Datasets</topic><topic>Detection</topic><topic>Detectors</topic><topic>Distance</topic><topic>Distribution</topic><topic>fine-grained detection</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>Learning</topic><topic>Modules</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Proposals</topic><topic>Remote sensing</topic><topic>Remote sensing images</topic><topic>Resolution</topic><topic>Switches</topic><topic>Switching</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Lanxin</creatorcontrib><creatorcontrib>Guo, Haowen</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Yu, Huai</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zou, Tongyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, Lanxin</au><au>Guo, Haowen</au><au>Yang, Wen</au><au>Yu, Huai</au><au>Yu, Lei</au><au>Zhang, Peng</au><au>Zou, Tongyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instance Switching-based Contrastive Learning for Fine-grained Airplane Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Detecting airplanes from high-resolution remote sensing images has a variety of applications. The characteristics of clear details, rich spatial and texture information of objects in high-resolution remote sensing images make it possible to identify different types of airplanes from backgrounds. However, airplanes usually exhibit slight inter-class discrepancy and unbalanced class distribution, which pose significant challenges to fine-grained detection of airplanes. In this paper, we propose the ISCL, an Instance Switching-based Contrastive Learning method for fine-grained airplane detection. Specifically, we introduce a Contrastive Learning-based Module (CLM) to widen the inter-class distance while narrowing the intra-class distance by optimizing feature space distribution with the InfoNCE + loss, which is built on a serial head in a cascaded way. Then, we design a Refined Instance Switching (ReIS) module to alleviate the class imbalance problem. To take full advantage of the CLM and ReIS, we further introduce an optimization strategy which is an organic combination of the two modules to widen the distances of different airplane categories that are easily confused. In addition, we contribute a fine-grained attribute-assisted dataset, dubbed GF-RarePlanes Dataset (GRD), to help the detectors better learn the subtle differences between the airplanes. Extensive experiments on two datasets ( i.e ., GF and FAIR1M) demonstrate that our proposed method can significantly improve the accuracy of fine-grained airplane detection under both HBB and OBB scenarios. Dataset and codes will be available at https://lanxin1011.github.io/ISCL/.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3218533</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3263-8768</orcidid><orcidid>https://orcid.org/0000-0003-2328-642X</orcidid><orcidid>https://orcid.org/0000-0001-6043-3412</orcidid><orcidid>https://orcid.org/0000-0002-5381-3991</orcidid><orcidid>https://orcid.org/0000-0002-7329-4631</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2735380437
source IEEE Electronic Library (IEL)
subjects Aircraft
airplane detection
Airplanes
class imbalance
Datasets
Detection
Detectors
Distance
Distribution
fine-grained detection
High resolution
Image resolution
Learning
Modules
Object detection
Object recognition
Optimization
Proposals
Remote sensing
Remote sensing images
Resolution
Switches
Switching
Task analysis
title Instance Switching-based Contrastive Learning for Fine-grained Airplane Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instance%20Switching-based%20Contrastive%20Learning%20for%20Fine-grained%20Airplane%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zeng,%20Lanxin&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3218533&rft_dat=%3Cproquest_RIE%3E2735380437%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735380437&rft_id=info:pmid/&rft_ieee_id=9933796&rfr_iscdi=true