Instance Switching-based Contrastive Learning for Fine-grained Airplane Detection
Detecting airplanes from high-resolution remote sensing images has a variety of applications. The characteristics of clear details, rich spatial and texture information of objects in high-resolution remote sensing images make it possible to identify different types of airplanes from backgrounds. How...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Zeng, Lanxin Guo, Haowen Yang, Wen Yu, Huai Yu, Lei Zhang, Peng Zou, Tongyuan |
description | Detecting airplanes from high-resolution remote sensing images has a variety of applications. The characteristics of clear details, rich spatial and texture information of objects in high-resolution remote sensing images make it possible to identify different types of airplanes from backgrounds. However, airplanes usually exhibit slight inter-class discrepancy and unbalanced class distribution, which pose significant challenges to fine-grained detection of airplanes. In this paper, we propose the ISCL, an Instance Switching-based Contrastive Learning method for fine-grained airplane detection. Specifically, we introduce a Contrastive Learning-based Module (CLM) to widen the inter-class distance while narrowing the intra-class distance by optimizing feature space distribution with the InfoNCE + loss, which is built on a serial head in a cascaded way. Then, we design a Refined Instance Switching (ReIS) module to alleviate the class imbalance problem. To take full advantage of the CLM and ReIS, we further introduce an optimization strategy which is an organic combination of the two modules to widen the distances of different airplane categories that are easily confused. In addition, we contribute a fine-grained attribute-assisted dataset, dubbed GF-RarePlanes Dataset (GRD), to help the detectors better learn the subtle differences between the airplanes. Extensive experiments on two datasets ( i.e ., GF and FAIR1M) demonstrate that our proposed method can significantly improve the accuracy of fine-grained airplane detection under both HBB and OBB scenarios. Dataset and codes will be available at https://lanxin1011.github.io/ISCL/. |
doi_str_mv | 10.1109/TGRS.2022.3218533 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2735380437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9933796</ieee_id><sourcerecordid>2735380437</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b1eebc4e4a5abab9437291786de9e48a1bd92269618230d63da2e9f2fd59dedd3</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKs_QNwEXE_N50yyLNXWQkG0dR0ykzc1pWZqkir-e6e0uLqLd-59cBC6pWREKdEPq9nbcsQIYyPOqJKcn6EBlVIVpBTiHA0I1WXBlGaX6CqlDSFUSFoN0Os8pGxDA3j543Pz4cO6qG0ChyddyNGm7L8BL8DG0J9w20U89QGKdbR9ODz2cbe1AfAjZGiy78I1umjtNsHNKYfoffq0mjwXi5fZfDJeFA3TPBc1BagbAcJKW9taC14xTStVOtAglKW104yVuqSKceJK7iwD3bLWSe3AOT5E98fdXey-9pCy2XT7GPqXhlVcckX6yZ6iR6qJXUoRWrOL_tPGX0OJOZgzB3PmYM6czPWdu2PHA8A_rzXnlS75H0ocas8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2735380437</pqid></control><display><type>article</type><title>Instance Switching-based Contrastive Learning for Fine-grained Airplane Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Zeng, Lanxin ; Guo, Haowen ; Yang, Wen ; Yu, Huai ; Yu, Lei ; Zhang, Peng ; Zou, Tongyuan</creator><creatorcontrib>Zeng, Lanxin ; Guo, Haowen ; Yang, Wen ; Yu, Huai ; Yu, Lei ; Zhang, Peng ; Zou, Tongyuan</creatorcontrib><description>Detecting airplanes from high-resolution remote sensing images has a variety of applications. The characteristics of clear details, rich spatial and texture information of objects in high-resolution remote sensing images make it possible to identify different types of airplanes from backgrounds. However, airplanes usually exhibit slight inter-class discrepancy and unbalanced class distribution, which pose significant challenges to fine-grained detection of airplanes. In this paper, we propose the ISCL, an Instance Switching-based Contrastive Learning method for fine-grained airplane detection. Specifically, we introduce a Contrastive Learning-based Module (CLM) to widen the inter-class distance while narrowing the intra-class distance by optimizing feature space distribution with the InfoNCE + loss, which is built on a serial head in a cascaded way. Then, we design a Refined Instance Switching (ReIS) module to alleviate the class imbalance problem. To take full advantage of the CLM and ReIS, we further introduce an optimization strategy which is an organic combination of the two modules to widen the distances of different airplane categories that are easily confused. In addition, we contribute a fine-grained attribute-assisted dataset, dubbed GF-RarePlanes Dataset (GRD), to help the detectors better learn the subtle differences between the airplanes. Extensive experiments on two datasets ( i.e ., GF and FAIR1M) demonstrate that our proposed method can significantly improve the accuracy of fine-grained airplane detection under both HBB and OBB scenarios. Dataset and codes will be available at https://lanxin1011.github.io/ISCL/.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3218533</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft ; airplane detection ; Airplanes ; class imbalance ; Datasets ; Detection ; Detectors ; Distance ; Distribution ; fine-grained detection ; High resolution ; Image resolution ; Learning ; Modules ; Object detection ; Object recognition ; Optimization ; Proposals ; Remote sensing ; Remote sensing images ; Resolution ; Switches ; Switching ; Task analysis</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b1eebc4e4a5abab9437291786de9e48a1bd92269618230d63da2e9f2fd59dedd3</citedby><cites>FETCH-LOGICAL-c293t-b1eebc4e4a5abab9437291786de9e48a1bd92269618230d63da2e9f2fd59dedd3</cites><orcidid>0000-0002-3263-8768 ; 0000-0003-2328-642X ; 0000-0001-6043-3412 ; 0000-0002-5381-3991 ; 0000-0002-7329-4631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9933796$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9933796$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zeng, Lanxin</creatorcontrib><creatorcontrib>Guo, Haowen</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Yu, Huai</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zou, Tongyuan</creatorcontrib><title>Instance Switching-based Contrastive Learning for Fine-grained Airplane Detection</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Detecting airplanes from high-resolution remote sensing images has a variety of applications. The characteristics of clear details, rich spatial and texture information of objects in high-resolution remote sensing images make it possible to identify different types of airplanes from backgrounds. However, airplanes usually exhibit slight inter-class discrepancy and unbalanced class distribution, which pose significant challenges to fine-grained detection of airplanes. In this paper, we propose the ISCL, an Instance Switching-based Contrastive Learning method for fine-grained airplane detection. Specifically, we introduce a Contrastive Learning-based Module (CLM) to widen the inter-class distance while narrowing the intra-class distance by optimizing feature space distribution with the InfoNCE + loss, which is built on a serial head in a cascaded way. Then, we design a Refined Instance Switching (ReIS) module to alleviate the class imbalance problem. To take full advantage of the CLM and ReIS, we further introduce an optimization strategy which is an organic combination of the two modules to widen the distances of different airplane categories that are easily confused. In addition, we contribute a fine-grained attribute-assisted dataset, dubbed GF-RarePlanes Dataset (GRD), to help the detectors better learn the subtle differences between the airplanes. Extensive experiments on two datasets ( i.e ., GF and FAIR1M) demonstrate that our proposed method can significantly improve the accuracy of fine-grained airplane detection under both HBB and OBB scenarios. Dataset and codes will be available at https://lanxin1011.github.io/ISCL/.</description><subject>Aircraft</subject><subject>airplane detection</subject><subject>Airplanes</subject><subject>class imbalance</subject><subject>Datasets</subject><subject>Detection</subject><subject>Detectors</subject><subject>Distance</subject><subject>Distribution</subject><subject>fine-grained detection</subject><subject>High resolution</subject><subject>Image resolution</subject><subject>Learning</subject><subject>Modules</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Proposals</subject><subject>Remote sensing</subject><subject>Remote sensing images</subject><subject>Resolution</subject><subject>Switches</subject><subject>Switching</subject><subject>Task analysis</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEURYMoWKs_QNwEXE_N50yyLNXWQkG0dR0ykzc1pWZqkir-e6e0uLqLd-59cBC6pWREKdEPq9nbcsQIYyPOqJKcn6EBlVIVpBTiHA0I1WXBlGaX6CqlDSFUSFoN0Os8pGxDA3j543Pz4cO6qG0ChyddyNGm7L8BL8DG0J9w20U89QGKdbR9ODz2cbe1AfAjZGiy78I1umjtNsHNKYfoffq0mjwXi5fZfDJeFA3TPBc1BagbAcJKW9taC14xTStVOtAglKW104yVuqSKceJK7iwD3bLWSe3AOT5E98fdXey-9pCy2XT7GPqXhlVcckX6yZ6iR6qJXUoRWrOL_tPGX0OJOZgzB3PmYM6czPWdu2PHA8A_rzXnlS75H0ocas8</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Zeng, Lanxin</creator><creator>Guo, Haowen</creator><creator>Yang, Wen</creator><creator>Yu, Huai</creator><creator>Yu, Lei</creator><creator>Zhang, Peng</creator><creator>Zou, Tongyuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3263-8768</orcidid><orcidid>https://orcid.org/0000-0003-2328-642X</orcidid><orcidid>https://orcid.org/0000-0001-6043-3412</orcidid><orcidid>https://orcid.org/0000-0002-5381-3991</orcidid><orcidid>https://orcid.org/0000-0002-7329-4631</orcidid></search><sort><creationdate>2022</creationdate><title>Instance Switching-based Contrastive Learning for Fine-grained Airplane Detection</title><author>Zeng, Lanxin ; Guo, Haowen ; Yang, Wen ; Yu, Huai ; Yu, Lei ; Zhang, Peng ; Zou, Tongyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b1eebc4e4a5abab9437291786de9e48a1bd92269618230d63da2e9f2fd59dedd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aircraft</topic><topic>airplane detection</topic><topic>Airplanes</topic><topic>class imbalance</topic><topic>Datasets</topic><topic>Detection</topic><topic>Detectors</topic><topic>Distance</topic><topic>Distribution</topic><topic>fine-grained detection</topic><topic>High resolution</topic><topic>Image resolution</topic><topic>Learning</topic><topic>Modules</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Proposals</topic><topic>Remote sensing</topic><topic>Remote sensing images</topic><topic>Resolution</topic><topic>Switches</topic><topic>Switching</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Lanxin</creatorcontrib><creatorcontrib>Guo, Haowen</creatorcontrib><creatorcontrib>Yang, Wen</creatorcontrib><creatorcontrib>Yu, Huai</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zou, Tongyuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zeng, Lanxin</au><au>Guo, Haowen</au><au>Yang, Wen</au><au>Yu, Huai</au><au>Yu, Lei</au><au>Zhang, Peng</au><au>Zou, Tongyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instance Switching-based Contrastive Learning for Fine-grained Airplane Detection</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Detecting airplanes from high-resolution remote sensing images has a variety of applications. The characteristics of clear details, rich spatial and texture information of objects in high-resolution remote sensing images make it possible to identify different types of airplanes from backgrounds. However, airplanes usually exhibit slight inter-class discrepancy and unbalanced class distribution, which pose significant challenges to fine-grained detection of airplanes. In this paper, we propose the ISCL, an Instance Switching-based Contrastive Learning method for fine-grained airplane detection. Specifically, we introduce a Contrastive Learning-based Module (CLM) to widen the inter-class distance while narrowing the intra-class distance by optimizing feature space distribution with the InfoNCE + loss, which is built on a serial head in a cascaded way. Then, we design a Refined Instance Switching (ReIS) module to alleviate the class imbalance problem. To take full advantage of the CLM and ReIS, we further introduce an optimization strategy which is an organic combination of the two modules to widen the distances of different airplane categories that are easily confused. In addition, we contribute a fine-grained attribute-assisted dataset, dubbed GF-RarePlanes Dataset (GRD), to help the detectors better learn the subtle differences between the airplanes. Extensive experiments on two datasets ( i.e ., GF and FAIR1M) demonstrate that our proposed method can significantly improve the accuracy of fine-grained airplane detection under both HBB and OBB scenarios. Dataset and codes will be available at https://lanxin1011.github.io/ISCL/.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3218533</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3263-8768</orcidid><orcidid>https://orcid.org/0000-0003-2328-642X</orcidid><orcidid>https://orcid.org/0000-0001-6043-3412</orcidid><orcidid>https://orcid.org/0000-0002-5381-3991</orcidid><orcidid>https://orcid.org/0000-0002-7329-4631</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2735380437 |
source | IEEE Electronic Library (IEL) |
subjects | Aircraft airplane detection Airplanes class imbalance Datasets Detection Detectors Distance Distribution fine-grained detection High resolution Image resolution Learning Modules Object detection Object recognition Optimization Proposals Remote sensing Remote sensing images Resolution Switches Switching Task analysis |
title | Instance Switching-based Contrastive Learning for Fine-grained Airplane Detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instance%20Switching-based%20Contrastive%20Learning%20for%20Fine-grained%20Airplane%20Detection&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zeng,%20Lanxin&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3218533&rft_dat=%3Cproquest_RIE%3E2735380437%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2735380437&rft_id=info:pmid/&rft_ieee_id=9933796&rfr_iscdi=true |