Securing Big Data Scientific Workflows via Trusted Heterogeneous Environments
Big data workflow management systems (BDWMS)s have recently emerged as popular data analytics platforms to conduct large-scale data analytics in the cloud. However, the protection of data confidentiality and secure execution of workflow applications remains an important and challenging problem. Alth...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on dependable and secure computing 2022-11, Vol.19 (6), p.4187-4203 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Big data workflow management systems (BDWMS)s have recently emerged as popular data analytics platforms to conduct large-scale data analytics in the cloud. However, the protection of data confidentiality and secure execution of workflow applications remains an important and challenging problem. Although a few data analytics systems, such as VC3 and Opaque, were developed to address security problems, they are limited to specific domains such as Map-Reduce-style and SQL query workflows. A generic secure framework for BDWMSs is still missing. In this article, we propose SecDATAVIEW, a distributed BDWMS that employs heterogeneous workers, such as Intel SGX and AMD SEV, to protect both workflow and workflow data execution, addressing three major security challenges: (1) Reducing the TCB size of the big data workflow management system in the untrusted cloud by leveraging the hardware-assisted TEE and software attestation; (2) Supporting Java-written workflow tasks to overcome the limitation of SGX's lack of support for Java programs; and (3) Reducing the adverse impact of SGX enclave memory paging overhead through a "Hybrid" workflow task scheduling system that selectively deploys sensitive tasks to a mix of SGX and SEV worker nodes. Our experimental results show that SecDATAVIEW imposes moderate overhead on the workflow execution time. |
---|---|
ISSN: | 1545-5971 1941-0018 |
DOI: | 10.1109/TDSC.2021.3123640 |