Rational quantitative attribution of beliefs, desires and percepts in human mentalizing
Social cognition depends on our capacity for ‘mentalizing’, or explaining an agent’s behaviour in terms of their mental states. The development and neural substrates of mentalizing are well-studied, but its computational basis is only beginning to be probed. Here we present a model of core mentalizi...
Gespeichert in:
Veröffentlicht in: | Nature human behaviour 2017-03, Vol.1 (4), p.0064, Article 0064 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 0064 |
container_title | Nature human behaviour |
container_volume | 1 |
creator | Baker, Chris L. Jara-Ettinger, Julian Saxe, Rebecca Tenenbaum, Joshua B. |
description | Social cognition depends on our capacity for ‘mentalizing’, or explaining an agent’s behaviour in terms of their mental states. The development and neural substrates of mentalizing are well-studied, but its computational basis is only beginning to be probed. Here we present a model of core mentalizing computations: inferring jointly an actor’s beliefs, desires and percepts from how they move in the local spatial environment. Our Bayesian theory of mind (BToM) model is based on probabilistically inverting artificial-intelligence approaches to rational planning and state estimation, which extend classical expected-utility agent models to sequential actions in complex, partially observable domains. The model accurately captures the quantitative mental-state judgements of human participants in two experiments, each varying multiple stimulus dimensions across a large number of stimuli. Comparative model fits with both simpler ‘lesioned’ BToM models and a family of simpler non-mentalistic motion features reveal the value contributed by each component of our model.
A Bayesian theory of mind model is shown to infer and quantify the mental state and judgements of humans in decision-making scenarios. The model is a key step towards enabling machines to ‘intuit’ human thoughts and desires. |
doi_str_mv | 10.1038/s41562-017-0064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2734858080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734858080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-b34f07d7e36767156d0d0a124a4beec4911a1f06d168650a5a0c5a1f9a3a317d3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIyzdhtwa52bJk3apQy-QBBEcRlu23TM0Ek7SSrorzfDCLpxdV_nHLgfIecMrhjwchkEK2SeAVMZgBRHZJbzSmWcK3H8pz8lixA2AMAqLiolZ-TtGaMdHPZ0N6GLNqbxw1CM0dt62p_o0NHa9NZ04ZK2JlhvAkXX0tH4xowxUOvo-7RFR7fGReztl3XrM3LSYR_M4qfOyevtzcvqPnt8untYXT9mDVcyZjUXHahWGS6VVOmHFlpAlgsUtTGNqBhD1oFsmSxlAVggNEXaVMiRM9XyObk45I5-2E0mRL0ZJp_-CTpXXJRFCSUk1fKgavwQgjedHr3dov_UDPQeoD4A1Amg3gNMDjg4QlK6tfG_uf9ZvgHd0HJ9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734858080</pqid></control><display><type>article</type><title>Rational quantitative attribution of beliefs, desires and percepts in human mentalizing</title><source>Alma/SFX Local Collection</source><creator>Baker, Chris L. ; Jara-Ettinger, Julian ; Saxe, Rebecca ; Tenenbaum, Joshua B.</creator><creatorcontrib>Baker, Chris L. ; Jara-Ettinger, Julian ; Saxe, Rebecca ; Tenenbaum, Joshua B.</creatorcontrib><description>Social cognition depends on our capacity for ‘mentalizing’, or explaining an agent’s behaviour in terms of their mental states. The development and neural substrates of mentalizing are well-studied, but its computational basis is only beginning to be probed. Here we present a model of core mentalizing computations: inferring jointly an actor’s beliefs, desires and percepts from how they move in the local spatial environment. Our Bayesian theory of mind (BToM) model is based on probabilistically inverting artificial-intelligence approaches to rational planning and state estimation, which extend classical expected-utility agent models to sequential actions in complex, partially observable domains. The model accurately captures the quantitative mental-state judgements of human participants in two experiments, each varying multiple stimulus dimensions across a large number of stimuli. Comparative model fits with both simpler ‘lesioned’ BToM models and a family of simpler non-mentalistic motion features reveal the value contributed by each component of our model.
A Bayesian theory of mind model is shown to infer and quantify the mental state and judgements of humans in decision-making scenarios. The model is a key step towards enabling machines to ‘intuit’ human thoughts and desires.</description><identifier>ISSN: 2397-3374</identifier><identifier>EISSN: 2397-3374</identifier><identifier>DOI: 10.1038/s41562-017-0064</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/3919 ; 631/477/2811 ; Attribution ; Bayesian analysis ; Behavioral Sciences ; Biomedical and Life Sciences ; Cognition & reasoning ; Decision making ; Experimental Psychology ; Humans ; Intelligence ; Life Sciences ; Mental states ; Microeconomics ; Neurosciences ; Personality and Social Psychology ; Social cognition ; Stimulus ; Theory of mind</subject><ispartof>Nature human behaviour, 2017-03, Vol.1 (4), p.0064, Article 0064</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2017</rights><rights>Macmillan Publishers Limited, part of Springer Nature. 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-b34f07d7e36767156d0d0a124a4beec4911a1f06d168650a5a0c5a1f9a3a317d3</citedby><cites>FETCH-LOGICAL-c376t-b34f07d7e36767156d0d0a124a4beec4911a1f06d168650a5a0c5a1f9a3a317d3</cites><orcidid>0000-0002-6167-1647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baker, Chris L.</creatorcontrib><creatorcontrib>Jara-Ettinger, Julian</creatorcontrib><creatorcontrib>Saxe, Rebecca</creatorcontrib><creatorcontrib>Tenenbaum, Joshua B.</creatorcontrib><title>Rational quantitative attribution of beliefs, desires and percepts in human mentalizing</title><title>Nature human behaviour</title><addtitle>Nat Hum Behav</addtitle><description>Social cognition depends on our capacity for ‘mentalizing’, or explaining an agent’s behaviour in terms of their mental states. The development and neural substrates of mentalizing are well-studied, but its computational basis is only beginning to be probed. Here we present a model of core mentalizing computations: inferring jointly an actor’s beliefs, desires and percepts from how they move in the local spatial environment. Our Bayesian theory of mind (BToM) model is based on probabilistically inverting artificial-intelligence approaches to rational planning and state estimation, which extend classical expected-utility agent models to sequential actions in complex, partially observable domains. The model accurately captures the quantitative mental-state judgements of human participants in two experiments, each varying multiple stimulus dimensions across a large number of stimuli. Comparative model fits with both simpler ‘lesioned’ BToM models and a family of simpler non-mentalistic motion features reveal the value contributed by each component of our model.
A Bayesian theory of mind model is shown to infer and quantify the mental state and judgements of humans in decision-making scenarios. The model is a key step towards enabling machines to ‘intuit’ human thoughts and desires.</description><subject>631/378/3919</subject><subject>631/477/2811</subject><subject>Attribution</subject><subject>Bayesian analysis</subject><subject>Behavioral Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Cognition & reasoning</subject><subject>Decision making</subject><subject>Experimental Psychology</subject><subject>Humans</subject><subject>Intelligence</subject><subject>Life Sciences</subject><subject>Mental states</subject><subject>Microeconomics</subject><subject>Neurosciences</subject><subject>Personality and Social Psychology</subject><subject>Social cognition</subject><subject>Stimulus</subject><subject>Theory of mind</subject><issn>2397-3374</issn><issn>2397-3374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOIyzdhtwa52bJk3apQy-QBBEcRlu23TM0Ek7SSrorzfDCLpxdV_nHLgfIecMrhjwchkEK2SeAVMZgBRHZJbzSmWcK3H8pz8lixA2AMAqLiolZ-TtGaMdHPZ0N6GLNqbxw1CM0dt62p_o0NHa9NZ04ZK2JlhvAkXX0tH4xowxUOvo-7RFR7fGReztl3XrM3LSYR_M4qfOyevtzcvqPnt8untYXT9mDVcyZjUXHahWGS6VVOmHFlpAlgsUtTGNqBhD1oFsmSxlAVggNEXaVMiRM9XyObk45I5-2E0mRL0ZJp_-CTpXXJRFCSUk1fKgavwQgjedHr3dov_UDPQeoD4A1Amg3gNMDjg4QlK6tfG_uf9ZvgHd0HJ9</recordid><startdate>20170313</startdate><enddate>20170313</enddate><creator>Baker, Chris L.</creator><creator>Jara-Ettinger, Julian</creator><creator>Saxe, Rebecca</creator><creator>Tenenbaum, Joshua B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88G</scope><scope>88J</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>M2M</scope><scope>M2R</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6167-1647</orcidid></search><sort><creationdate>20170313</creationdate><title>Rational quantitative attribution of beliefs, desires and percepts in human mentalizing</title><author>Baker, Chris L. ; Jara-Ettinger, Julian ; Saxe, Rebecca ; Tenenbaum, Joshua B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-b34f07d7e36767156d0d0a124a4beec4911a1f06d168650a5a0c5a1f9a3a317d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/378/3919</topic><topic>631/477/2811</topic><topic>Attribution</topic><topic>Bayesian analysis</topic><topic>Behavioral Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Cognition & reasoning</topic><topic>Decision making</topic><topic>Experimental Psychology</topic><topic>Humans</topic><topic>Intelligence</topic><topic>Life Sciences</topic><topic>Mental states</topic><topic>Microeconomics</topic><topic>Neurosciences</topic><topic>Personality and Social Psychology</topic><topic>Social cognition</topic><topic>Stimulus</topic><topic>Theory of mind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Chris L.</creatorcontrib><creatorcontrib>Jara-Ettinger, Julian</creatorcontrib><creatorcontrib>Saxe, Rebecca</creatorcontrib><creatorcontrib>Tenenbaum, Joshua B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>Psychology Database</collection><collection>Social Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Nature human behaviour</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Chris L.</au><au>Jara-Ettinger, Julian</au><au>Saxe, Rebecca</au><au>Tenenbaum, Joshua B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational quantitative attribution of beliefs, desires and percepts in human mentalizing</atitle><jtitle>Nature human behaviour</jtitle><stitle>Nat Hum Behav</stitle><date>2017-03-13</date><risdate>2017</risdate><volume>1</volume><issue>4</issue><spage>0064</spage><pages>0064-</pages><artnum>0064</artnum><issn>2397-3374</issn><eissn>2397-3374</eissn><abstract>Social cognition depends on our capacity for ‘mentalizing’, or explaining an agent’s behaviour in terms of their mental states. The development and neural substrates of mentalizing are well-studied, but its computational basis is only beginning to be probed. Here we present a model of core mentalizing computations: inferring jointly an actor’s beliefs, desires and percepts from how they move in the local spatial environment. Our Bayesian theory of mind (BToM) model is based on probabilistically inverting artificial-intelligence approaches to rational planning and state estimation, which extend classical expected-utility agent models to sequential actions in complex, partially observable domains. The model accurately captures the quantitative mental-state judgements of human participants in two experiments, each varying multiple stimulus dimensions across a large number of stimuli. Comparative model fits with both simpler ‘lesioned’ BToM models and a family of simpler non-mentalistic motion features reveal the value contributed by each component of our model.
A Bayesian theory of mind model is shown to infer and quantify the mental state and judgements of humans in decision-making scenarios. The model is a key step towards enabling machines to ‘intuit’ human thoughts and desires.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41562-017-0064</doi><orcidid>https://orcid.org/0000-0002-6167-1647</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-3374 |
ispartof | Nature human behaviour, 2017-03, Vol.1 (4), p.0064, Article 0064 |
issn | 2397-3374 2397-3374 |
language | eng |
recordid | cdi_proquest_journals_2734858080 |
source | Alma/SFX Local Collection |
subjects | 631/378/3919 631/477/2811 Attribution Bayesian analysis Behavioral Sciences Biomedical and Life Sciences Cognition & reasoning Decision making Experimental Psychology Humans Intelligence Life Sciences Mental states Microeconomics Neurosciences Personality and Social Psychology Social cognition Stimulus Theory of mind |
title | Rational quantitative attribution of beliefs, desires and percepts in human mentalizing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20quantitative%20attribution%20of%20beliefs,%20desires%20and%20percepts%20in%20human%20mentalizing&rft.jtitle=Nature%20human%20behaviour&rft.au=Baker,%20Chris%20L.&rft.date=2017-03-13&rft.volume=1&rft.issue=4&rft.spage=0064&rft.pages=0064-&rft.artnum=0064&rft.issn=2397-3374&rft.eissn=2397-3374&rft_id=info:doi/10.1038/s41562-017-0064&rft_dat=%3Cproquest_cross%3E2734858080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734858080&rft_id=info:pmid/&rfr_iscdi=true |