Rational quantitative attribution of beliefs, desires and percepts in human mentalizing

Social cognition depends on our capacity for ‘mentalizing’, or explaining an agent’s behaviour in terms of their mental states. The development and neural substrates of mentalizing are well-studied, but its computational basis is only beginning to be probed. Here we present a model of core mentalizi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature human behaviour 2017-03, Vol.1 (4), p.0064, Article 0064
Hauptverfasser: Baker, Chris L., Jara-Ettinger, Julian, Saxe, Rebecca, Tenenbaum, Joshua B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 0064
container_title Nature human behaviour
container_volume 1
creator Baker, Chris L.
Jara-Ettinger, Julian
Saxe, Rebecca
Tenenbaum, Joshua B.
description Social cognition depends on our capacity for ‘mentalizing’, or explaining an agent’s behaviour in terms of their mental states. The development and neural substrates of mentalizing are well-studied, but its computational basis is only beginning to be probed. Here we present a model of core mentalizing computations: inferring jointly an actor’s beliefs, desires and percepts from how they move in the local spatial environment. Our Bayesian theory of mind (BToM) model is based on probabilistically inverting artificial-intelligence approaches to rational planning and state estimation, which extend classical expected-utility agent models to sequential actions in complex, partially observable domains. The model accurately captures the quantitative mental-state judgements of human participants in two experiments, each varying multiple stimulus dimensions across a large number of stimuli. Comparative model fits with both simpler ‘lesioned’ BToM models and a family of simpler non-mentalistic motion features reveal the value contributed by each component of our model. A Bayesian theory of mind model is shown to infer and quantify the mental state and judgements of humans in decision-making scenarios. The model is a key step towards enabling machines to ‘intuit’ human thoughts and desires.
doi_str_mv 10.1038/s41562-017-0064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2734858080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734858080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-b34f07d7e36767156d0d0a124a4beec4911a1f06d168650a5a0c5a1f9a3a317d3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIyzdhtwa52bJk3apQy-QBBEcRlu23TM0Ek7SSrorzfDCLpxdV_nHLgfIecMrhjwchkEK2SeAVMZgBRHZJbzSmWcK3H8pz8lixA2AMAqLiolZ-TtGaMdHPZ0N6GLNqbxw1CM0dt62p_o0NHa9NZ04ZK2JlhvAkXX0tH4xowxUOvo-7RFR7fGReztl3XrM3LSYR_M4qfOyevtzcvqPnt8untYXT9mDVcyZjUXHahWGS6VVOmHFlpAlgsUtTGNqBhD1oFsmSxlAVggNEXaVMiRM9XyObk45I5-2E0mRL0ZJp_-CTpXXJRFCSUk1fKgavwQgjedHr3dov_UDPQeoD4A1Amg3gNMDjg4QlK6tfG_uf9ZvgHd0HJ9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734858080</pqid></control><display><type>article</type><title>Rational quantitative attribution of beliefs, desires and percepts in human mentalizing</title><source>Alma/SFX Local Collection</source><creator>Baker, Chris L. ; Jara-Ettinger, Julian ; Saxe, Rebecca ; Tenenbaum, Joshua B.</creator><creatorcontrib>Baker, Chris L. ; Jara-Ettinger, Julian ; Saxe, Rebecca ; Tenenbaum, Joshua B.</creatorcontrib><description>Social cognition depends on our capacity for ‘mentalizing’, or explaining an agent’s behaviour in terms of their mental states. The development and neural substrates of mentalizing are well-studied, but its computational basis is only beginning to be probed. Here we present a model of core mentalizing computations: inferring jointly an actor’s beliefs, desires and percepts from how they move in the local spatial environment. Our Bayesian theory of mind (BToM) model is based on probabilistically inverting artificial-intelligence approaches to rational planning and state estimation, which extend classical expected-utility agent models to sequential actions in complex, partially observable domains. The model accurately captures the quantitative mental-state judgements of human participants in two experiments, each varying multiple stimulus dimensions across a large number of stimuli. Comparative model fits with both simpler ‘lesioned’ BToM models and a family of simpler non-mentalistic motion features reveal the value contributed by each component of our model. A Bayesian theory of mind model is shown to infer and quantify the mental state and judgements of humans in decision-making scenarios. The model is a key step towards enabling machines to ‘intuit’ human thoughts and desires.</description><identifier>ISSN: 2397-3374</identifier><identifier>EISSN: 2397-3374</identifier><identifier>DOI: 10.1038/s41562-017-0064</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378/3919 ; 631/477/2811 ; Attribution ; Bayesian analysis ; Behavioral Sciences ; Biomedical and Life Sciences ; Cognition &amp; reasoning ; Decision making ; Experimental Psychology ; Humans ; Intelligence ; Life Sciences ; Mental states ; Microeconomics ; Neurosciences ; Personality and Social Psychology ; Social cognition ; Stimulus ; Theory of mind</subject><ispartof>Nature human behaviour, 2017-03, Vol.1 (4), p.0064, Article 0064</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2017</rights><rights>Macmillan Publishers Limited, part of Springer Nature. 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-b34f07d7e36767156d0d0a124a4beec4911a1f06d168650a5a0c5a1f9a3a317d3</citedby><cites>FETCH-LOGICAL-c376t-b34f07d7e36767156d0d0a124a4beec4911a1f06d168650a5a0c5a1f9a3a317d3</cites><orcidid>0000-0002-6167-1647</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baker, Chris L.</creatorcontrib><creatorcontrib>Jara-Ettinger, Julian</creatorcontrib><creatorcontrib>Saxe, Rebecca</creatorcontrib><creatorcontrib>Tenenbaum, Joshua B.</creatorcontrib><title>Rational quantitative attribution of beliefs, desires and percepts in human mentalizing</title><title>Nature human behaviour</title><addtitle>Nat Hum Behav</addtitle><description>Social cognition depends on our capacity for ‘mentalizing’, or explaining an agent’s behaviour in terms of their mental states. The development and neural substrates of mentalizing are well-studied, but its computational basis is only beginning to be probed. Here we present a model of core mentalizing computations: inferring jointly an actor’s beliefs, desires and percepts from how they move in the local spatial environment. Our Bayesian theory of mind (BToM) model is based on probabilistically inverting artificial-intelligence approaches to rational planning and state estimation, which extend classical expected-utility agent models to sequential actions in complex, partially observable domains. The model accurately captures the quantitative mental-state judgements of human participants in two experiments, each varying multiple stimulus dimensions across a large number of stimuli. Comparative model fits with both simpler ‘lesioned’ BToM models and a family of simpler non-mentalistic motion features reveal the value contributed by each component of our model. A Bayesian theory of mind model is shown to infer and quantify the mental state and judgements of humans in decision-making scenarios. The model is a key step towards enabling machines to ‘intuit’ human thoughts and desires.</description><subject>631/378/3919</subject><subject>631/477/2811</subject><subject>Attribution</subject><subject>Bayesian analysis</subject><subject>Behavioral Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Cognition &amp; reasoning</subject><subject>Decision making</subject><subject>Experimental Psychology</subject><subject>Humans</subject><subject>Intelligence</subject><subject>Life Sciences</subject><subject>Mental states</subject><subject>Microeconomics</subject><subject>Neurosciences</subject><subject>Personality and Social Psychology</subject><subject>Social cognition</subject><subject>Stimulus</subject><subject>Theory of mind</subject><issn>2397-3374</issn><issn>2397-3374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOIyzdhtwa52bJk3apQy-QBBEcRlu23TM0Ek7SSrorzfDCLpxdV_nHLgfIecMrhjwchkEK2SeAVMZgBRHZJbzSmWcK3H8pz8lixA2AMAqLiolZ-TtGaMdHPZ0N6GLNqbxw1CM0dt62p_o0NHa9NZ04ZK2JlhvAkXX0tH4xowxUOvo-7RFR7fGReztl3XrM3LSYR_M4qfOyevtzcvqPnt8untYXT9mDVcyZjUXHahWGS6VVOmHFlpAlgsUtTGNqBhD1oFsmSxlAVggNEXaVMiRM9XyObk45I5-2E0mRL0ZJp_-CTpXXJRFCSUk1fKgavwQgjedHr3dov_UDPQeoD4A1Amg3gNMDjg4QlK6tfG_uf9ZvgHd0HJ9</recordid><startdate>20170313</startdate><enddate>20170313</enddate><creator>Baker, Chris L.</creator><creator>Jara-Ettinger, Julian</creator><creator>Saxe, Rebecca</creator><creator>Tenenbaum, Joshua B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88G</scope><scope>88J</scope><scope>8BJ</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>JBE</scope><scope>M2M</scope><scope>M2R</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6167-1647</orcidid></search><sort><creationdate>20170313</creationdate><title>Rational quantitative attribution of beliefs, desires and percepts in human mentalizing</title><author>Baker, Chris L. ; Jara-Ettinger, Julian ; Saxe, Rebecca ; Tenenbaum, Joshua B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-b34f07d7e36767156d0d0a124a4beec4911a1f06d168650a5a0c5a1f9a3a317d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/378/3919</topic><topic>631/477/2811</topic><topic>Attribution</topic><topic>Bayesian analysis</topic><topic>Behavioral Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Cognition &amp; reasoning</topic><topic>Decision making</topic><topic>Experimental Psychology</topic><topic>Humans</topic><topic>Intelligence</topic><topic>Life Sciences</topic><topic>Mental states</topic><topic>Microeconomics</topic><topic>Neurosciences</topic><topic>Personality and Social Psychology</topic><topic>Social cognition</topic><topic>Stimulus</topic><topic>Theory of mind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baker, Chris L.</creatorcontrib><creatorcontrib>Jara-Ettinger, Julian</creatorcontrib><creatorcontrib>Saxe, Rebecca</creatorcontrib><creatorcontrib>Tenenbaum, Joshua B.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>International Bibliography of the Social Sciences</collection><collection>Psychology Database</collection><collection>Social Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Nature human behaviour</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baker, Chris L.</au><au>Jara-Ettinger, Julian</au><au>Saxe, Rebecca</au><au>Tenenbaum, Joshua B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational quantitative attribution of beliefs, desires and percepts in human mentalizing</atitle><jtitle>Nature human behaviour</jtitle><stitle>Nat Hum Behav</stitle><date>2017-03-13</date><risdate>2017</risdate><volume>1</volume><issue>4</issue><spage>0064</spage><pages>0064-</pages><artnum>0064</artnum><issn>2397-3374</issn><eissn>2397-3374</eissn><abstract>Social cognition depends on our capacity for ‘mentalizing’, or explaining an agent’s behaviour in terms of their mental states. The development and neural substrates of mentalizing are well-studied, but its computational basis is only beginning to be probed. Here we present a model of core mentalizing computations: inferring jointly an actor’s beliefs, desires and percepts from how they move in the local spatial environment. Our Bayesian theory of mind (BToM) model is based on probabilistically inverting artificial-intelligence approaches to rational planning and state estimation, which extend classical expected-utility agent models to sequential actions in complex, partially observable domains. The model accurately captures the quantitative mental-state judgements of human participants in two experiments, each varying multiple stimulus dimensions across a large number of stimuli. Comparative model fits with both simpler ‘lesioned’ BToM models and a family of simpler non-mentalistic motion features reveal the value contributed by each component of our model. A Bayesian theory of mind model is shown to infer and quantify the mental state and judgements of humans in decision-making scenarios. The model is a key step towards enabling machines to ‘intuit’ human thoughts and desires.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41562-017-0064</doi><orcidid>https://orcid.org/0000-0002-6167-1647</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2397-3374
ispartof Nature human behaviour, 2017-03, Vol.1 (4), p.0064, Article 0064
issn 2397-3374
2397-3374
language eng
recordid cdi_proquest_journals_2734858080
source Alma/SFX Local Collection
subjects 631/378/3919
631/477/2811
Attribution
Bayesian analysis
Behavioral Sciences
Biomedical and Life Sciences
Cognition & reasoning
Decision making
Experimental Psychology
Humans
Intelligence
Life Sciences
Mental states
Microeconomics
Neurosciences
Personality and Social Psychology
Social cognition
Stimulus
Theory of mind
title Rational quantitative attribution of beliefs, desires and percepts in human mentalizing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20quantitative%20attribution%20of%20beliefs,%20desires%20and%20percepts%20in%20human%20mentalizing&rft.jtitle=Nature%20human%20behaviour&rft.au=Baker,%20Chris%20L.&rft.date=2017-03-13&rft.volume=1&rft.issue=4&rft.spage=0064&rft.pages=0064-&rft.artnum=0064&rft.issn=2397-3374&rft.eissn=2397-3374&rft_id=info:doi/10.1038/s41562-017-0064&rft_dat=%3Cproquest_cross%3E2734858080%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734858080&rft_id=info:pmid/&rfr_iscdi=true