Prospection of pyrochlore and microlite mineral groups through Raman spectroscopy coupled with artificial neural networks

Niobium (Nb) and tantalum (Ta) concentrated in pyrochlore and microlite mineral groups, respectively, have attracted worldwide attention due to their importance to aerospace and electronics industries. This manuscript addresses the use of Raman spectroscopy coupled with artificial neural networks (A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2022-11, Vol.53 (11), p.1924-1930
Hauptverfasser: Exposito De Queiroz, Alfredo Antonio Alencar, Andrade, Marcelo B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1930
container_issue 11
container_start_page 1924
container_title Journal of Raman spectroscopy
container_volume 53
creator Exposito De Queiroz, Alfredo Antonio Alencar
Andrade, Marcelo B.
description Niobium (Nb) and tantalum (Ta) concentrated in pyrochlore and microlite mineral groups, respectively, have attracted worldwide attention due to their importance to aerospace and electronics industries. This manuscript addresses the use of Raman spectroscopy coupled with artificial neural networks (ANNs) for improving the identification and characterization of mineral species belonging to pyrochlore and microlite mineral groups. Spectral data were collected in the 100–1400 cm−1 range and two baseline corrections, namely Asymmetric Least Squares (ALS) and Piecewise Linear Fitting (PLF) were performed and compared. In most cases, ALS achieved better performance in the removal of background noise with no elimination of important features of the original spectrum. The ANNs were fed with balanced datasets and based on different topologies with logistics, hyperbolic tangent, and rectified linear unit activation functions in the hidden layers. Pyrochlore and microlite minerals were identified by Raman spectroscopy. Multilayer Perceptron network classified minerals. Mineral classifier built from artificial neural networks and Raman spectra.
doi_str_mv 10.1002/jrs.6433
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2734830250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734830250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-24f94b83c1e4662198c1d731e9c25f627a901a550b7f5312ca439f828a005ecc3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJGdtxEi9RxVOVQAXWluvarUsaBztRlb_HbdmyOrM4c0dzEbomMCEA9G4T4qTIGTtBIwKizHLO-SkaASvLDPKqOEcXMW4AQIiCjNDwHnxsje6cb7C3uB2C1-vaB4NVs8Rbp4OvXWfS1JigarwKvm8j7taJqzWeq61q8CEhBWnfDlgnoTZLvHPdGqvQOeu0S5uN6cMB3c6H73iJzqyqo7n64xh9PT58Tp-z2dvTy_R-lmkqGMtobkW-qJgmJi8KSkSlybJkxAhNuS1oqQQQxTksSssZoVrlTNiKVgqAG63ZGN0cc9vgf3oTO7nxfWjSSUlLllcMKIdk3R6t9G-MwVjZBrdVYZAE5L5YmYqV-2KTmh3VnavN8K8nX-cfB_8XBcR8Aw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734830250</pqid></control><display><type>article</type><title>Prospection of pyrochlore and microlite mineral groups through Raman spectroscopy coupled with artificial neural networks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Exposito De Queiroz, Alfredo Antonio Alencar ; Andrade, Marcelo B.</creator><creatorcontrib>Exposito De Queiroz, Alfredo Antonio Alencar ; Andrade, Marcelo B.</creatorcontrib><description>Niobium (Nb) and tantalum (Ta) concentrated in pyrochlore and microlite mineral groups, respectively, have attracted worldwide attention due to their importance to aerospace and electronics industries. This manuscript addresses the use of Raman spectroscopy coupled with artificial neural networks (ANNs) for improving the identification and characterization of mineral species belonging to pyrochlore and microlite mineral groups. Spectral data were collected in the 100–1400 cm−1 range and two baseline corrections, namely Asymmetric Least Squares (ALS) and Piecewise Linear Fitting (PLF) were performed and compared. In most cases, ALS achieved better performance in the removal of background noise with no elimination of important features of the original spectrum. The ANNs were fed with balanced datasets and based on different topologies with logistics, hyperbolic tangent, and rectified linear unit activation functions in the hidden layers. Pyrochlore and microlite minerals were identified by Raman spectroscopy. Multilayer Perceptron network classified minerals. Mineral classifier built from artificial neural networks and Raman spectra.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.6433</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Aerospace industry ; ANNs ; Artificial neural networks ; Avionics ; Background noise ; microlite ; Neural networks ; Niobium ; pyrochlore ; Pyrochlores ; Raman spectroscopy ; Spectroscopy ; Tantalum ; Topology ; topology architecture</subject><ispartof>Journal of Raman spectroscopy, 2022-11, Vol.53 (11), p.1924-1930</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-24f94b83c1e4662198c1d731e9c25f627a901a550b7f5312ca439f828a005ecc3</citedby><cites>FETCH-LOGICAL-c2933-24f94b83c1e4662198c1d731e9c25f627a901a550b7f5312ca439f828a005ecc3</cites><orcidid>0000-0001-6585-8380 ; 0000-0001-9137-8831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.6433$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.6433$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Exposito De Queiroz, Alfredo Antonio Alencar</creatorcontrib><creatorcontrib>Andrade, Marcelo B.</creatorcontrib><title>Prospection of pyrochlore and microlite mineral groups through Raman spectroscopy coupled with artificial neural networks</title><title>Journal of Raman spectroscopy</title><description>Niobium (Nb) and tantalum (Ta) concentrated in pyrochlore and microlite mineral groups, respectively, have attracted worldwide attention due to their importance to aerospace and electronics industries. This manuscript addresses the use of Raman spectroscopy coupled with artificial neural networks (ANNs) for improving the identification and characterization of mineral species belonging to pyrochlore and microlite mineral groups. Spectral data were collected in the 100–1400 cm−1 range and two baseline corrections, namely Asymmetric Least Squares (ALS) and Piecewise Linear Fitting (PLF) were performed and compared. In most cases, ALS achieved better performance in the removal of background noise with no elimination of important features of the original spectrum. The ANNs were fed with balanced datasets and based on different topologies with logistics, hyperbolic tangent, and rectified linear unit activation functions in the hidden layers. Pyrochlore and microlite minerals were identified by Raman spectroscopy. Multilayer Perceptron network classified minerals. Mineral classifier built from artificial neural networks and Raman spectra.</description><subject>Aerospace industry</subject><subject>ANNs</subject><subject>Artificial neural networks</subject><subject>Avionics</subject><subject>Background noise</subject><subject>microlite</subject><subject>Neural networks</subject><subject>Niobium</subject><subject>pyrochlore</subject><subject>Pyrochlores</subject><subject>Raman spectroscopy</subject><subject>Spectroscopy</subject><subject>Tantalum</subject><subject>Topology</subject><subject>topology architecture</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJGdtxEi9RxVOVQAXWluvarUsaBztRlb_HbdmyOrM4c0dzEbomMCEA9G4T4qTIGTtBIwKizHLO-SkaASvLDPKqOEcXMW4AQIiCjNDwHnxsje6cb7C3uB2C1-vaB4NVs8Rbp4OvXWfS1JigarwKvm8j7taJqzWeq61q8CEhBWnfDlgnoTZLvHPdGqvQOeu0S5uN6cMB3c6H73iJzqyqo7n64xh9PT58Tp-z2dvTy_R-lmkqGMtobkW-qJgmJi8KSkSlybJkxAhNuS1oqQQQxTksSssZoVrlTNiKVgqAG63ZGN0cc9vgf3oTO7nxfWjSSUlLllcMKIdk3R6t9G-MwVjZBrdVYZAE5L5YmYqV-2KTmh3VnavN8K8nX-cfB_8XBcR8Aw</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Exposito De Queiroz, Alfredo Antonio Alencar</creator><creator>Andrade, Marcelo B.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-6585-8380</orcidid><orcidid>https://orcid.org/0000-0001-9137-8831</orcidid></search><sort><creationdate>202211</creationdate><title>Prospection of pyrochlore and microlite mineral groups through Raman spectroscopy coupled with artificial neural networks</title><author>Exposito De Queiroz, Alfredo Antonio Alencar ; Andrade, Marcelo B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-24f94b83c1e4662198c1d731e9c25f627a901a550b7f5312ca439f828a005ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aerospace industry</topic><topic>ANNs</topic><topic>Artificial neural networks</topic><topic>Avionics</topic><topic>Background noise</topic><topic>microlite</topic><topic>Neural networks</topic><topic>Niobium</topic><topic>pyrochlore</topic><topic>Pyrochlores</topic><topic>Raman spectroscopy</topic><topic>Spectroscopy</topic><topic>Tantalum</topic><topic>Topology</topic><topic>topology architecture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Exposito De Queiroz, Alfredo Antonio Alencar</creatorcontrib><creatorcontrib>Andrade, Marcelo B.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Exposito De Queiroz, Alfredo Antonio Alencar</au><au>Andrade, Marcelo B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prospection of pyrochlore and microlite mineral groups through Raman spectroscopy coupled with artificial neural networks</atitle><jtitle>Journal of Raman spectroscopy</jtitle><date>2022-11</date><risdate>2022</risdate><volume>53</volume><issue>11</issue><spage>1924</spage><epage>1930</epage><pages>1924-1930</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>Niobium (Nb) and tantalum (Ta) concentrated in pyrochlore and microlite mineral groups, respectively, have attracted worldwide attention due to their importance to aerospace and electronics industries. This manuscript addresses the use of Raman spectroscopy coupled with artificial neural networks (ANNs) for improving the identification and characterization of mineral species belonging to pyrochlore and microlite mineral groups. Spectral data were collected in the 100–1400 cm−1 range and two baseline corrections, namely Asymmetric Least Squares (ALS) and Piecewise Linear Fitting (PLF) were performed and compared. In most cases, ALS achieved better performance in the removal of background noise with no elimination of important features of the original spectrum. The ANNs were fed with balanced datasets and based on different topologies with logistics, hyperbolic tangent, and rectified linear unit activation functions in the hidden layers. Pyrochlore and microlite minerals were identified by Raman spectroscopy. Multilayer Perceptron network classified minerals. Mineral classifier built from artificial neural networks and Raman spectra.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jrs.6433</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6585-8380</orcidid><orcidid>https://orcid.org/0000-0001-9137-8831</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2022-11, Vol.53 (11), p.1924-1930
issn 0377-0486
1097-4555
language eng
recordid cdi_proquest_journals_2734830250
source Wiley Online Library Journals Frontfile Complete
subjects Aerospace industry
ANNs
Artificial neural networks
Avionics
Background noise
microlite
Neural networks
Niobium
pyrochlore
Pyrochlores
Raman spectroscopy
Spectroscopy
Tantalum
Topology
topology architecture
title Prospection of pyrochlore and microlite mineral groups through Raman spectroscopy coupled with artificial neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prospection%20of%20pyrochlore%20and%20microlite%20mineral%20groups%20through%20Raman%20spectroscopy%20coupled%20with%20artificial%20neural%20networks&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Exposito%20De%20Queiroz,%20Alfredo%20Antonio%20Alencar&rft.date=2022-11&rft.volume=53&rft.issue=11&rft.spage=1924&rft.epage=1930&rft.pages=1924-1930&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.6433&rft_dat=%3Cproquest_cross%3E2734830250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734830250&rft_id=info:pmid/&rfr_iscdi=true