Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation

In this study, a new method of laser shock micro-sheet bulk metal forming (LSMSBMF) is proposed in combination with the advantages of near-net sheet forming and laser shock forming. This method not only owns the advantages of high-speed loading, uniform material flow and die filling, but also is sui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of material forming 2023, Vol.16 (1), Article 2
Hauptverfasser: Zhang, Tao, Wang, Xiao, Zhang, Di, Gong, Qifan, Shen, Zongbao, Hou, Xin, Liu, Huixia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title International journal of material forming
container_volume 16
creator Zhang, Tao
Wang, Xiao
Zhang, Di
Gong, Qifan
Shen, Zongbao
Hou, Xin
Liu, Huixia
description In this study, a new method of laser shock micro-sheet bulk metal forming (LSMSBMF) is proposed in combination with the advantages of near-net sheet forming and laser shock forming. This method not only owns the advantages of high-speed loading, uniform material flow and die filling, but also is suitable for micro-forming. Based on a combination of experiment and numerical simulation, the influence of different laser energy loadings on the forming depth of micro-turbine is studied, and the material flow, stress wave propagation process and inertia effect during LSMSBMF forming process are further analyzed. The results reveal that micro-turbine gear tooth forming depth increases with the increase of laser energy, but the rate of increase slows down. By analyzing the material flow inside the workpiece in the forming process, it can be found that laser shock can improve the formability and material flow uniformity of the workpiece. At the same time, the smoothness of workpiece formation can be improved under the restriction of micro-die cavity. By studying the propagation of stress wave, it is found that elastic wave propagates faster than plastic wave at the beginning of this process, and the micro-turbine is formed by inertia filling the micro-die cavity.
doi_str_mv 10.1007/s12289-022-01723-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2734643298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734643298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-95af7af03b5cc985ba1f75d2043d70d385ef708ea4d26a67501b709ad5698a493</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBITGN_gFMlzgHHSZuGG5r4kiZxgRtSlDbp1tGPkbQI_j3ZiuCGL7bs957tR8g5g0sGIK8CQ8wVBUQKTCKneERmTGVAM2Ti-LeG7JQsQthCDI5SopiR15UJzidh05dvSVuXvqdh49yQFGMTG24wTVL1vq279XXSja3zdRlboW7Hxgx13yWms4n73MVB67o9_MM0tT3MzshJZZrgFj95Tl7ubp-XD3T1dP-4vFnRkjM1UJWaSpoKeJGWpcrTwrBKphZBcCvB8jx1lYTcGWExM5lMgRUSlLFppnIjFJ-Ti0l35_v30YVBb_vRd3GlRslFJjiqPKJwQsUnQ_Cu0rt4s_FfmoHeG6knI3U0Uh-M1BhJfCKFCO7Wzv9J_8P6BgWOdnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734643298</pqid></control><display><type>article</type><title>Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation</title><source>SpringerLink Journals</source><creator>Zhang, Tao ; Wang, Xiao ; Zhang, Di ; Gong, Qifan ; Shen, Zongbao ; Hou, Xin ; Liu, Huixia</creator><creatorcontrib>Zhang, Tao ; Wang, Xiao ; Zhang, Di ; Gong, Qifan ; Shen, Zongbao ; Hou, Xin ; Liu, Huixia</creatorcontrib><description>In this study, a new method of laser shock micro-sheet bulk metal forming (LSMSBMF) is proposed in combination with the advantages of near-net sheet forming and laser shock forming. This method not only owns the advantages of high-speed loading, uniform material flow and die filling, but also is suitable for micro-forming. Based on a combination of experiment and numerical simulation, the influence of different laser energy loadings on the forming depth of micro-turbine is studied, and the material flow, stress wave propagation process and inertia effect during LSMSBMF forming process are further analyzed. The results reveal that micro-turbine gear tooth forming depth increases with the increase of laser energy, but the rate of increase slows down. By analyzing the material flow inside the workpiece in the forming process, it can be found that laser shock can improve the formability and material flow uniformity of the workpiece. At the same time, the smoothness of workpiece formation can be improved under the restriction of micro-die cavity. By studying the propagation of stress wave, it is found that elastic wave propagates faster than plastic wave at the beginning of this process, and the micro-turbine is formed by inertia filling the micro-die cavity.</description><identifier>ISSN: 1960-6206</identifier><identifier>EISSN: 1960-6214</identifier><identifier>DOI: 10.1007/s12289-022-01723-2</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>CAE) and Design ; Computational Intelligence ; Computer-Aided Engineering (CAD ; Control ; Die cavities ; Dies ; Dynamical Systems ; Elastic waves ; Engineering ; Gear teeth ; Inertia ; Laser shock processing ; Lasers ; Machines ; Manufacturing ; Materials Science ; Mechanical Engineering ; Metal forming ; Original Research ; Processes ; Smoothness ; Stress propagation ; Stress waves ; Turbines ; Vibration ; Wave propagation ; Workpieces</subject><ispartof>International journal of material forming, 2023, Vol.16 (1), Article 2</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-95af7af03b5cc985ba1f75d2043d70d385ef708ea4d26a67501b709ad5698a493</citedby><cites>FETCH-LOGICAL-c319t-95af7af03b5cc985ba1f75d2043d70d385ef708ea4d26a67501b709ad5698a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12289-022-01723-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12289-022-01723-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Gong, Qifan</creatorcontrib><creatorcontrib>Shen, Zongbao</creatorcontrib><creatorcontrib>Hou, Xin</creatorcontrib><creatorcontrib>Liu, Huixia</creatorcontrib><title>Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation</title><title>International journal of material forming</title><addtitle>Int J Mater Form</addtitle><description>In this study, a new method of laser shock micro-sheet bulk metal forming (LSMSBMF) is proposed in combination with the advantages of near-net sheet forming and laser shock forming. This method not only owns the advantages of high-speed loading, uniform material flow and die filling, but also is suitable for micro-forming. Based on a combination of experiment and numerical simulation, the influence of different laser energy loadings on the forming depth of micro-turbine is studied, and the material flow, stress wave propagation process and inertia effect during LSMSBMF forming process are further analyzed. The results reveal that micro-turbine gear tooth forming depth increases with the increase of laser energy, but the rate of increase slows down. By analyzing the material flow inside the workpiece in the forming process, it can be found that laser shock can improve the formability and material flow uniformity of the workpiece. At the same time, the smoothness of workpiece formation can be improved under the restriction of micro-die cavity. By studying the propagation of stress wave, it is found that elastic wave propagates faster than plastic wave at the beginning of this process, and the micro-turbine is formed by inertia filling the micro-die cavity.</description><subject>CAE) and Design</subject><subject>Computational Intelligence</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Die cavities</subject><subject>Dies</subject><subject>Dynamical Systems</subject><subject>Elastic waves</subject><subject>Engineering</subject><subject>Gear teeth</subject><subject>Inertia</subject><subject>Laser shock processing</subject><subject>Lasers</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Metal forming</subject><subject>Original Research</subject><subject>Processes</subject><subject>Smoothness</subject><subject>Stress propagation</subject><subject>Stress waves</subject><subject>Turbines</subject><subject>Vibration</subject><subject>Wave propagation</subject><subject>Workpieces</subject><issn>1960-6206</issn><issn>1960-6214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBITGN_gFMlzgHHSZuGG5r4kiZxgRtSlDbp1tGPkbQI_j3ZiuCGL7bs957tR8g5g0sGIK8CQ8wVBUQKTCKneERmTGVAM2Ti-LeG7JQsQthCDI5SopiR15UJzidh05dvSVuXvqdh49yQFGMTG24wTVL1vq279XXSja3zdRlboW7Hxgx13yWms4n73MVB67o9_MM0tT3MzshJZZrgFj95Tl7ubp-XD3T1dP-4vFnRkjM1UJWaSpoKeJGWpcrTwrBKphZBcCvB8jx1lYTcGWExM5lMgRUSlLFppnIjFJ-Ti0l35_v30YVBb_vRd3GlRslFJjiqPKJwQsUnQ_Cu0rt4s_FfmoHeG6knI3U0Uh-M1BhJfCKFCO7Wzv9J_8P6BgWOdnI</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhang, Tao</creator><creator>Wang, Xiao</creator><creator>Zhang, Di</creator><creator>Gong, Qifan</creator><creator>Shen, Zongbao</creator><creator>Hou, Xin</creator><creator>Liu, Huixia</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation</title><author>Zhang, Tao ; Wang, Xiao ; Zhang, Di ; Gong, Qifan ; Shen, Zongbao ; Hou, Xin ; Liu, Huixia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-95af7af03b5cc985ba1f75d2043d70d385ef708ea4d26a67501b709ad5698a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CAE) and Design</topic><topic>Computational Intelligence</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Die cavities</topic><topic>Dies</topic><topic>Dynamical Systems</topic><topic>Elastic waves</topic><topic>Engineering</topic><topic>Gear teeth</topic><topic>Inertia</topic><topic>Laser shock processing</topic><topic>Lasers</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Metal forming</topic><topic>Original Research</topic><topic>Processes</topic><topic>Smoothness</topic><topic>Stress propagation</topic><topic>Stress waves</topic><topic>Turbines</topic><topic>Vibration</topic><topic>Wave propagation</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Gong, Qifan</creatorcontrib><creatorcontrib>Shen, Zongbao</creatorcontrib><creatorcontrib>Hou, Xin</creatorcontrib><creatorcontrib>Liu, Huixia</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of material forming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tao</au><au>Wang, Xiao</au><au>Zhang, Di</au><au>Gong, Qifan</au><au>Shen, Zongbao</au><au>Hou, Xin</au><au>Liu, Huixia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation</atitle><jtitle>International journal of material forming</jtitle><stitle>Int J Mater Form</stitle><date>2023</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><artnum>2</artnum><issn>1960-6206</issn><eissn>1960-6214</eissn><abstract>In this study, a new method of laser shock micro-sheet bulk metal forming (LSMSBMF) is proposed in combination with the advantages of near-net sheet forming and laser shock forming. This method not only owns the advantages of high-speed loading, uniform material flow and die filling, but also is suitable for micro-forming. Based on a combination of experiment and numerical simulation, the influence of different laser energy loadings on the forming depth of micro-turbine is studied, and the material flow, stress wave propagation process and inertia effect during LSMSBMF forming process are further analyzed. The results reveal that micro-turbine gear tooth forming depth increases with the increase of laser energy, but the rate of increase slows down. By analyzing the material flow inside the workpiece in the forming process, it can be found that laser shock can improve the formability and material flow uniformity of the workpiece. At the same time, the smoothness of workpiece formation can be improved under the restriction of micro-die cavity. By studying the propagation of stress wave, it is found that elastic wave propagates faster than plastic wave at the beginning of this process, and the micro-turbine is formed by inertia filling the micro-die cavity.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12289-022-01723-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 1960-6206
ispartof International journal of material forming, 2023, Vol.16 (1), Article 2
issn 1960-6206
1960-6214
language eng
recordid cdi_proquest_journals_2734643298
source SpringerLink Journals
subjects CAE) and Design
Computational Intelligence
Computer-Aided Engineering (CAD
Control
Die cavities
Dies
Dynamical Systems
Elastic waves
Engineering
Gear teeth
Inertia
Laser shock processing
Lasers
Machines
Manufacturing
Materials Science
Mechanical Engineering
Metal forming
Original Research
Processes
Smoothness
Stress propagation
Stress waves
Turbines
Vibration
Wave propagation
Workpieces
title Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20shock%20micro-sheet%20bulk%20metal%20forming:%20numerical%20simulation%20and%20experimental%20validation&rft.jtitle=International%20journal%20of%20material%20forming&rft.au=Zhang,%20Tao&rft.date=2023&rft.volume=16&rft.issue=1&rft.artnum=2&rft.issn=1960-6206&rft.eissn=1960-6214&rft_id=info:doi/10.1007/s12289-022-01723-2&rft_dat=%3Cproquest_cross%3E2734643298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734643298&rft_id=info:pmid/&rfr_iscdi=true