Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation
In this study, a new method of laser shock micro-sheet bulk metal forming (LSMSBMF) is proposed in combination with the advantages of near-net sheet forming and laser shock forming. This method not only owns the advantages of high-speed loading, uniform material flow and die filling, but also is sui...
Gespeichert in:
Veröffentlicht in: | International journal of material forming 2023, Vol.16 (1), Article 2 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | International journal of material forming |
container_volume | 16 |
creator | Zhang, Tao Wang, Xiao Zhang, Di Gong, Qifan Shen, Zongbao Hou, Xin Liu, Huixia |
description | In this study, a new method of laser shock micro-sheet bulk metal forming (LSMSBMF) is proposed in combination with the advantages of near-net sheet forming and laser shock forming. This method not only owns the advantages of high-speed loading, uniform material flow and die filling, but also is suitable for micro-forming. Based on a combination of experiment and numerical simulation, the influence of different laser energy loadings on the forming depth of micro-turbine is studied, and the material flow, stress wave propagation process and inertia effect during LSMSBMF forming process are further analyzed. The results reveal that micro-turbine gear tooth forming depth increases with the increase of laser energy, but the rate of increase slows down. By analyzing the material flow inside the workpiece in the forming process, it can be found that laser shock can improve the formability and material flow uniformity of the workpiece. At the same time, the smoothness of workpiece formation can be improved under the restriction of micro-die cavity. By studying the propagation of stress wave, it is found that elastic wave propagates faster than plastic wave at the beginning of this process, and the micro-turbine is formed by inertia filling the micro-die cavity. |
doi_str_mv | 10.1007/s12289-022-01723-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2734643298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734643298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-95af7af03b5cc985ba1f75d2043d70d385ef708ea4d26a67501b709ad5698a493</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBITGN_gFMlzgHHSZuGG5r4kiZxgRtSlDbp1tGPkbQI_j3ZiuCGL7bs957tR8g5g0sGIK8CQ8wVBUQKTCKneERmTGVAM2Ti-LeG7JQsQthCDI5SopiR15UJzidh05dvSVuXvqdh49yQFGMTG24wTVL1vq279XXSja3zdRlboW7Hxgx13yWms4n73MVB67o9_MM0tT3MzshJZZrgFj95Tl7ubp-XD3T1dP-4vFnRkjM1UJWaSpoKeJGWpcrTwrBKphZBcCvB8jx1lYTcGWExM5lMgRUSlLFppnIjFJ-Ti0l35_v30YVBb_vRd3GlRslFJjiqPKJwQsUnQ_Cu0rt4s_FfmoHeG6knI3U0Uh-M1BhJfCKFCO7Wzv9J_8P6BgWOdnI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734643298</pqid></control><display><type>article</type><title>Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation</title><source>SpringerLink Journals</source><creator>Zhang, Tao ; Wang, Xiao ; Zhang, Di ; Gong, Qifan ; Shen, Zongbao ; Hou, Xin ; Liu, Huixia</creator><creatorcontrib>Zhang, Tao ; Wang, Xiao ; Zhang, Di ; Gong, Qifan ; Shen, Zongbao ; Hou, Xin ; Liu, Huixia</creatorcontrib><description>In this study, a new method of laser shock micro-sheet bulk metal forming (LSMSBMF) is proposed in combination with the advantages of near-net sheet forming and laser shock forming. This method not only owns the advantages of high-speed loading, uniform material flow and die filling, but also is suitable for micro-forming. Based on a combination of experiment and numerical simulation, the influence of different laser energy loadings on the forming depth of micro-turbine is studied, and the material flow, stress wave propagation process and inertia effect during LSMSBMF forming process are further analyzed. The results reveal that micro-turbine gear tooth forming depth increases with the increase of laser energy, but the rate of increase slows down. By analyzing the material flow inside the workpiece in the forming process, it can be found that laser shock can improve the formability and material flow uniformity of the workpiece. At the same time, the smoothness of workpiece formation can be improved under the restriction of micro-die cavity. By studying the propagation of stress wave, it is found that elastic wave propagates faster than plastic wave at the beginning of this process, and the micro-turbine is formed by inertia filling the micro-die cavity.</description><identifier>ISSN: 1960-6206</identifier><identifier>EISSN: 1960-6214</identifier><identifier>DOI: 10.1007/s12289-022-01723-2</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>CAE) and Design ; Computational Intelligence ; Computer-Aided Engineering (CAD ; Control ; Die cavities ; Dies ; Dynamical Systems ; Elastic waves ; Engineering ; Gear teeth ; Inertia ; Laser shock processing ; Lasers ; Machines ; Manufacturing ; Materials Science ; Mechanical Engineering ; Metal forming ; Original Research ; Processes ; Smoothness ; Stress propagation ; Stress waves ; Turbines ; Vibration ; Wave propagation ; Workpieces</subject><ispartof>International journal of material forming, 2023, Vol.16 (1), Article 2</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-95af7af03b5cc985ba1f75d2043d70d385ef708ea4d26a67501b709ad5698a493</citedby><cites>FETCH-LOGICAL-c319t-95af7af03b5cc985ba1f75d2043d70d385ef708ea4d26a67501b709ad5698a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12289-022-01723-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12289-022-01723-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Gong, Qifan</creatorcontrib><creatorcontrib>Shen, Zongbao</creatorcontrib><creatorcontrib>Hou, Xin</creatorcontrib><creatorcontrib>Liu, Huixia</creatorcontrib><title>Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation</title><title>International journal of material forming</title><addtitle>Int J Mater Form</addtitle><description>In this study, a new method of laser shock micro-sheet bulk metal forming (LSMSBMF) is proposed in combination with the advantages of near-net sheet forming and laser shock forming. This method not only owns the advantages of high-speed loading, uniform material flow and die filling, but also is suitable for micro-forming. Based on a combination of experiment and numerical simulation, the influence of different laser energy loadings on the forming depth of micro-turbine is studied, and the material flow, stress wave propagation process and inertia effect during LSMSBMF forming process are further analyzed. The results reveal that micro-turbine gear tooth forming depth increases with the increase of laser energy, but the rate of increase slows down. By analyzing the material flow inside the workpiece in the forming process, it can be found that laser shock can improve the formability and material flow uniformity of the workpiece. At the same time, the smoothness of workpiece formation can be improved under the restriction of micro-die cavity. By studying the propagation of stress wave, it is found that elastic wave propagates faster than plastic wave at the beginning of this process, and the micro-turbine is formed by inertia filling the micro-die cavity.</description><subject>CAE) and Design</subject><subject>Computational Intelligence</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Die cavities</subject><subject>Dies</subject><subject>Dynamical Systems</subject><subject>Elastic waves</subject><subject>Engineering</subject><subject>Gear teeth</subject><subject>Inertia</subject><subject>Laser shock processing</subject><subject>Lasers</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Metal forming</subject><subject>Original Research</subject><subject>Processes</subject><subject>Smoothness</subject><subject>Stress propagation</subject><subject>Stress waves</subject><subject>Turbines</subject><subject>Vibration</subject><subject>Wave propagation</subject><subject>Workpieces</subject><issn>1960-6206</issn><issn>1960-6214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBITGN_gFMlzgHHSZuGG5r4kiZxgRtSlDbp1tGPkbQI_j3ZiuCGL7bs957tR8g5g0sGIK8CQ8wVBUQKTCKneERmTGVAM2Ti-LeG7JQsQthCDI5SopiR15UJzidh05dvSVuXvqdh49yQFGMTG24wTVL1vq279XXSja3zdRlboW7Hxgx13yWms4n73MVB67o9_MM0tT3MzshJZZrgFj95Tl7ubp-XD3T1dP-4vFnRkjM1UJWaSpoKeJGWpcrTwrBKphZBcCvB8jx1lYTcGWExM5lMgRUSlLFppnIjFJ-Ti0l35_v30YVBb_vRd3GlRslFJjiqPKJwQsUnQ_Cu0rt4s_FfmoHeG6knI3U0Uh-M1BhJfCKFCO7Wzv9J_8P6BgWOdnI</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Zhang, Tao</creator><creator>Wang, Xiao</creator><creator>Zhang, Di</creator><creator>Gong, Qifan</creator><creator>Shen, Zongbao</creator><creator>Hou, Xin</creator><creator>Liu, Huixia</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation</title><author>Zhang, Tao ; Wang, Xiao ; Zhang, Di ; Gong, Qifan ; Shen, Zongbao ; Hou, Xin ; Liu, Huixia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-95af7af03b5cc985ba1f75d2043d70d385ef708ea4d26a67501b709ad5698a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CAE) and Design</topic><topic>Computational Intelligence</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Die cavities</topic><topic>Dies</topic><topic>Dynamical Systems</topic><topic>Elastic waves</topic><topic>Engineering</topic><topic>Gear teeth</topic><topic>Inertia</topic><topic>Laser shock processing</topic><topic>Lasers</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Metal forming</topic><topic>Original Research</topic><topic>Processes</topic><topic>Smoothness</topic><topic>Stress propagation</topic><topic>Stress waves</topic><topic>Turbines</topic><topic>Vibration</topic><topic>Wave propagation</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tao</creatorcontrib><creatorcontrib>Wang, Xiao</creatorcontrib><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Gong, Qifan</creatorcontrib><creatorcontrib>Shen, Zongbao</creatorcontrib><creatorcontrib>Hou, Xin</creatorcontrib><creatorcontrib>Liu, Huixia</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of material forming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tao</au><au>Wang, Xiao</au><au>Zhang, Di</au><au>Gong, Qifan</au><au>Shen, Zongbao</au><au>Hou, Xin</au><au>Liu, Huixia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation</atitle><jtitle>International journal of material forming</jtitle><stitle>Int J Mater Form</stitle><date>2023</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><artnum>2</artnum><issn>1960-6206</issn><eissn>1960-6214</eissn><abstract>In this study, a new method of laser shock micro-sheet bulk metal forming (LSMSBMF) is proposed in combination with the advantages of near-net sheet forming and laser shock forming. This method not only owns the advantages of high-speed loading, uniform material flow and die filling, but also is suitable for micro-forming. Based on a combination of experiment and numerical simulation, the influence of different laser energy loadings on the forming depth of micro-turbine is studied, and the material flow, stress wave propagation process and inertia effect during LSMSBMF forming process are further analyzed. The results reveal that micro-turbine gear tooth forming depth increases with the increase of laser energy, but the rate of increase slows down. By analyzing the material flow inside the workpiece in the forming process, it can be found that laser shock can improve the formability and material flow uniformity of the workpiece. At the same time, the smoothness of workpiece formation can be improved under the restriction of micro-die cavity. By studying the propagation of stress wave, it is found that elastic wave propagates faster than plastic wave at the beginning of this process, and the micro-turbine is formed by inertia filling the micro-die cavity.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s12289-022-01723-2</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1960-6206 |
ispartof | International journal of material forming, 2023, Vol.16 (1), Article 2 |
issn | 1960-6206 1960-6214 |
language | eng |
recordid | cdi_proquest_journals_2734643298 |
source | SpringerLink Journals |
subjects | CAE) and Design Computational Intelligence Computer-Aided Engineering (CAD Control Die cavities Dies Dynamical Systems Elastic waves Engineering Gear teeth Inertia Laser shock processing Lasers Machines Manufacturing Materials Science Mechanical Engineering Metal forming Original Research Processes Smoothness Stress propagation Stress waves Turbines Vibration Wave propagation Workpieces |
title | Laser shock micro-sheet bulk metal forming: numerical simulation and experimental validation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20shock%20micro-sheet%20bulk%20metal%20forming:%20numerical%20simulation%20and%20experimental%20validation&rft.jtitle=International%20journal%20of%20material%20forming&rft.au=Zhang,%20Tao&rft.date=2023&rft.volume=16&rft.issue=1&rft.artnum=2&rft.issn=1960-6206&rft.eissn=1960-6214&rft_id=info:doi/10.1007/s12289-022-01723-2&rft_dat=%3Cproquest_cross%3E2734643298%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734643298&rft_id=info:pmid/&rfr_iscdi=true |