Speedup the optimization of maximal closure of a node-weighted directed acyclic graph

The maximal closure optimization problem of a node-weighted graph is a super class of the optimal monotonic Boolean function problem. It is known that the maximal closure optimization problem can be transformed to a min- s - t cut problem. This paper focuses on the complement problem of the maximal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Opsearch 2022-12, Vol.59 (4), p.1413-1437
Hauptverfasser: Chen, Zhi-Ming, Lee, Cheng-Hsiung, Lai, Hung-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1437
container_issue 4
container_start_page 1413
container_title Opsearch
container_volume 59
creator Chen, Zhi-Ming
Lee, Cheng-Hsiung
Lai, Hung-Lin
description The maximal closure optimization problem of a node-weighted graph is a super class of the optimal monotonic Boolean function problem. It is known that the maximal closure optimization problem can be transformed to a min- s - t cut problem. This paper focuses on the complement problem of the maximal closure on a node-weighted directed acyclic graph, named optimal pruning of node-weighted directed acyclic graph (OPNWDAG). A variant of transformation is proposed and a framework of scheme is developed to speed up the solving time of the OPNWDAG. They also can be applied to solve the optimal monotonic Boolean function problem. The experiments show that the improvement is significant and the speedup of time complexity is O ( n 0.209 ) at least.
doi_str_mv 10.1007/s12597-022-00595-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2734641756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734641756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-54bc0b87dd160a840cff4577d393f47f77131a86562e1f0da6a685e10f68782d3</originalsourceid><addsrcrecordid>eNp9UMtKAzEUHUTBWv0BVwHX0Zt3upTiCwoutOuQ5tFOaSdjMkXt1zt1hO5c3cO958E9VXVN4JYAqLtCqJgoDJRiADEReH9SjWCiBAZG4bTHwAAzrdV5dVHKGkBy0HxUzd_aEPyuRd0qoNR29bbe265ODUoRbe1XvbUb5Dap7HI4rCxqkg_4M9TLVRc88nUO7gCs-3ab2qFltu3qsjqLdlPC1d8cV_PHh_fpM569Pr1M72fYMao6LPjCwUIr74kEqzm4GLlQyrMJi1xFpQgjVkshaSARvJVWahEIRKmVpp6Nq5vBt83pYxdKZ9Zpl5s-0lDFuORECdmz6MByOZWSQzRt7v_K34aAOdRnhvpMX5_5rc_sexEaRMGlpi5HiaaccM0k7ylsoJT-2CxDPqb_Y_wDY0p9dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734641756</pqid></control><display><type>article</type><title>Speedup the optimization of maximal closure of a node-weighted directed acyclic graph</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Zhi-Ming ; Lee, Cheng-Hsiung ; Lai, Hung-Lin</creator><creatorcontrib>Chen, Zhi-Ming ; Lee, Cheng-Hsiung ; Lai, Hung-Lin</creatorcontrib><description>The maximal closure optimization problem of a node-weighted graph is a super class of the optimal monotonic Boolean function problem. It is known that the maximal closure optimization problem can be transformed to a min- s - t cut problem. This paper focuses on the complement problem of the maximal closure on a node-weighted directed acyclic graph, named optimal pruning of node-weighted directed acyclic graph (OPNWDAG). A variant of transformation is proposed and a framework of scheme is developed to speed up the solving time of the OPNWDAG. They also can be applied to solve the optimal monotonic Boolean function problem. The experiments show that the improvement is significant and the speedup of time complexity is O ( n 0.209 ) at least.</description><identifier>ISSN: 0030-3887</identifier><identifier>EISSN: 0975-0320</identifier><identifier>DOI: 10.1007/s12597-022-00595-z</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Boolean functions ; Business and Management ; Management ; Mathematics ; Nodes ; Operations research ; Operations Research/Decision Theory ; Optimization ; Theoretical Article</subject><ispartof>Opsearch, 2022-12, Vol.59 (4), p.1413-1437</ispartof><rights>The Author(s), under exclusive licence to Operational Research Society of India 2022</rights><rights>The Author(s), under exclusive licence to Operational Research Society of India 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c327t-54bc0b87dd160a840cff4577d393f47f77131a86562e1f0da6a685e10f68782d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12597-022-00595-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12597-022-00595-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Chen, Zhi-Ming</creatorcontrib><creatorcontrib>Lee, Cheng-Hsiung</creatorcontrib><creatorcontrib>Lai, Hung-Lin</creatorcontrib><title>Speedup the optimization of maximal closure of a node-weighted directed acyclic graph</title><title>Opsearch</title><addtitle>OPSEARCH</addtitle><description>The maximal closure optimization problem of a node-weighted graph is a super class of the optimal monotonic Boolean function problem. It is known that the maximal closure optimization problem can be transformed to a min- s - t cut problem. This paper focuses on the complement problem of the maximal closure on a node-weighted directed acyclic graph, named optimal pruning of node-weighted directed acyclic graph (OPNWDAG). A variant of transformation is proposed and a framework of scheme is developed to speed up the solving time of the OPNWDAG. They also can be applied to solve the optimal monotonic Boolean function problem. The experiments show that the improvement is significant and the speedup of time complexity is O ( n 0.209 ) at least.</description><subject>Boolean functions</subject><subject>Business and Management</subject><subject>Management</subject><subject>Mathematics</subject><subject>Nodes</subject><subject>Operations research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Theoretical Article</subject><issn>0030-3887</issn><issn>0975-0320</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKAzEUHUTBWv0BVwHX0Zt3upTiCwoutOuQ5tFOaSdjMkXt1zt1hO5c3cO958E9VXVN4JYAqLtCqJgoDJRiADEReH9SjWCiBAZG4bTHwAAzrdV5dVHKGkBy0HxUzd_aEPyuRd0qoNR29bbe265ODUoRbe1XvbUb5Dap7HI4rCxqkg_4M9TLVRc88nUO7gCs-3ab2qFltu3qsjqLdlPC1d8cV_PHh_fpM569Pr1M72fYMao6LPjCwUIr74kEqzm4GLlQyrMJi1xFpQgjVkshaSARvJVWahEIRKmVpp6Nq5vBt83pYxdKZ9Zpl5s-0lDFuORECdmz6MByOZWSQzRt7v_K34aAOdRnhvpMX5_5rc_sexEaRMGlpi5HiaaccM0k7ylsoJT-2CxDPqb_Y_wDY0p9dg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Chen, Zhi-Ming</creator><creator>Lee, Cheng-Hsiung</creator><creator>Lai, Hung-Lin</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20221201</creationdate><title>Speedup the optimization of maximal closure of a node-weighted directed acyclic graph</title><author>Chen, Zhi-Ming ; Lee, Cheng-Hsiung ; Lai, Hung-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-54bc0b87dd160a840cff4577d393f47f77131a86562e1f0da6a685e10f68782d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boolean functions</topic><topic>Business and Management</topic><topic>Management</topic><topic>Mathematics</topic><topic>Nodes</topic><topic>Operations research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Theoretical Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhi-Ming</creatorcontrib><creatorcontrib>Lee, Cheng-Hsiung</creatorcontrib><creatorcontrib>Lai, Hung-Lin</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Opsearch</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhi-Ming</au><au>Lee, Cheng-Hsiung</au><au>Lai, Hung-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speedup the optimization of maximal closure of a node-weighted directed acyclic graph</atitle><jtitle>Opsearch</jtitle><stitle>OPSEARCH</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>59</volume><issue>4</issue><spage>1413</spage><epage>1437</epage><pages>1413-1437</pages><issn>0030-3887</issn><eissn>0975-0320</eissn><abstract>The maximal closure optimization problem of a node-weighted graph is a super class of the optimal monotonic Boolean function problem. It is known that the maximal closure optimization problem can be transformed to a min- s - t cut problem. This paper focuses on the complement problem of the maximal closure on a node-weighted directed acyclic graph, named optimal pruning of node-weighted directed acyclic graph (OPNWDAG). A variant of transformation is proposed and a framework of scheme is developed to speed up the solving time of the OPNWDAG. They also can be applied to solve the optimal monotonic Boolean function problem. The experiments show that the improvement is significant and the speedup of time complexity is O ( n 0.209 ) at least.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12597-022-00595-z</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-3887
ispartof Opsearch, 2022-12, Vol.59 (4), p.1413-1437
issn 0030-3887
0975-0320
language eng
recordid cdi_proquest_journals_2734641756
source Springer Nature - Complete Springer Journals
subjects Boolean functions
Business and Management
Management
Mathematics
Nodes
Operations research
Operations Research/Decision Theory
Optimization
Theoretical Article
title Speedup the optimization of maximal closure of a node-weighted directed acyclic graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speedup%20the%20optimization%20of%20maximal%20closure%20of%20a%20node-weighted%20directed%20acyclic%20graph&rft.jtitle=Opsearch&rft.au=Chen,%20Zhi-Ming&rft.date=2022-12-01&rft.volume=59&rft.issue=4&rft.spage=1413&rft.epage=1437&rft.pages=1413-1437&rft.issn=0030-3887&rft.eissn=0975-0320&rft_id=info:doi/10.1007/s12597-022-00595-z&rft_dat=%3Cproquest_cross%3E2734641756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734641756&rft_id=info:pmid/&rfr_iscdi=true