A hierarchical system to predict behavior of soil and cantilever sheet wall by data-driven models

The study proposes a framework combining machine learning (ML) models into a logical hierarchical system which evaluates the stability of the sheet wall before other predictions. The study uses the hardening soil (HS) model to develop a 200-sample finite element analysis (FEA) database, to develop t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of Structural and Civil Engineering 2022-06, Vol.16 (6), p.667-684
Hauptverfasser: Bui, Nang Duc, Phan, Hieu Chi, Pham, Tiep Duc, Dhar, Ashutosh Sutra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 6
container_start_page 667
container_title Frontiers of Structural and Civil Engineering
container_volume 16
creator Bui, Nang Duc
Phan, Hieu Chi
Pham, Tiep Duc
Dhar, Ashutosh Sutra
description The study proposes a framework combining machine learning (ML) models into a logical hierarchical system which evaluates the stability of the sheet wall before other predictions. The study uses the hardening soil (HS) model to develop a 200-sample finite element analysis (FEA) database, to develop the ML models. Consequently, a system containing three trained ML models is proposed to first predict the stability status (random forest classification, RFC) followed by 1) the cantilever top horizontal displacement of sheet wall (artificial neural network regression models, RANN1) and 2) vertical settlement of soil (RANN2). The uncertainty of this data-driven system is partially investigated by developing 1000 RFC models, based on the application of random sampling technique in the data splitting process. Investigation on the distribution of the evaluation metrics reveals negative skewed data toward the 1.0000 value. This implies a high performance of RFC on the database with medians of accuracy, precision, and recall, on test set are 1.0000, 1.0000, and 0.92857, respectively. The regression ANN models have coefficient of determinations on test set, as high as 0.9521 for RANN1, and 0.9988 for RANN2, respectively. The parametric study for these regressions is also provided to evaluate the relative insight influence of inputs to output.
doi_str_mv 10.1007/s11709-022-0822-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2734641383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734641383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-f2847fc119c25fe65e7c2bc148ab64464c03fa83a6f8e8b079ebf722224a9c3a3</originalsourceid><addsrcrecordid>eNp1kEtLAzEQx4MoWGo_gLeA59W8uskeS_EFghc9h2x24qZsNzVJK_32pqzoyTnMzOH_gB9C15TcUkLkXaJUkqYijFVElSXO0IyRZlkxIZrz35-TS7RIaUMIoURyovgMmRXuPUQTbe-tGXA6pgxbnAPeRei8zbiF3hx8iDg4nIIfsBk7bM2Y_QAHiDj1ABl_mWHA7RF3Jpuqi_4AI96GDoZ0hS6cGRIsfu4cvT_cv62fqpfXx-f16qWynMpcOaaEdJbSxrKlg3oJ0rLWUqFMWwtRC0u4M4qb2ilQLZENtE6yMsI0lhs-RzdT7i6Gzz2krDdhH8dSqZnkJYByxYuKTiobQ0oRnN5FvzXxqCnRJ5h6gqkLTH2CqUXxsMmTinb8gPiX_L_pG8N3dyM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734641383</pqid></control><display><type>article</type><title>A hierarchical system to predict behavior of soil and cantilever sheet wall by data-driven models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bui, Nang Duc ; Phan, Hieu Chi ; Pham, Tiep Duc ; Dhar, Ashutosh Sutra</creator><creatorcontrib>Bui, Nang Duc ; Phan, Hieu Chi ; Pham, Tiep Duc ; Dhar, Ashutosh Sutra</creatorcontrib><description>The study proposes a framework combining machine learning (ML) models into a logical hierarchical system which evaluates the stability of the sheet wall before other predictions. The study uses the hardening soil (HS) model to develop a 200-sample finite element analysis (FEA) database, to develop the ML models. Consequently, a system containing three trained ML models is proposed to first predict the stability status (random forest classification, RFC) followed by 1) the cantilever top horizontal displacement of sheet wall (artificial neural network regression models, RANN1) and 2) vertical settlement of soil (RANN2). The uncertainty of this data-driven system is partially investigated by developing 1000 RFC models, based on the application of random sampling technique in the data splitting process. Investigation on the distribution of the evaluation metrics reveals negative skewed data toward the 1.0000 value. This implies a high performance of RFC on the database with medians of accuracy, precision, and recall, on test set are 1.0000, 1.0000, and 0.92857, respectively. The regression ANN models have coefficient of determinations on test set, as high as 0.9521 for RANN1, and 0.9988 for RANN2, respectively. The parametric study for these regressions is also provided to evaluate the relative insight influence of inputs to output.</description><identifier>ISSN: 2095-2430</identifier><identifier>EISSN: 2095-2449</identifier><identifier>DOI: 10.1007/s11709-022-0822-4</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Artificial neural networks ; Cities ; Civil Engineering ; Countries ; Engineering ; Finite element method ; Machine learning ; Mathematical models ; Neural networks ; Random sampling ; Regions ; Regression analysis ; Regression models ; Research Article ; Sampling methods ; Soil settlement ; Soils ; Stability analysis ; Statistical sampling ; Test sets</subject><ispartof>Frontiers of Structural and Civil Engineering, 2022-06, Vol.16 (6), p.667-684</ispartof><rights>Higher Education Press 2022</rights><rights>Higher Education Press 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-f2847fc119c25fe65e7c2bc148ab64464c03fa83a6f8e8b079ebf722224a9c3a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11709-022-0822-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11709-022-0822-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bui, Nang Duc</creatorcontrib><creatorcontrib>Phan, Hieu Chi</creatorcontrib><creatorcontrib>Pham, Tiep Duc</creatorcontrib><creatorcontrib>Dhar, Ashutosh Sutra</creatorcontrib><title>A hierarchical system to predict behavior of soil and cantilever sheet wall by data-driven models</title><title>Frontiers of Structural and Civil Engineering</title><addtitle>Front. Struct. Civ. Eng</addtitle><description>The study proposes a framework combining machine learning (ML) models into a logical hierarchical system which evaluates the stability of the sheet wall before other predictions. The study uses the hardening soil (HS) model to develop a 200-sample finite element analysis (FEA) database, to develop the ML models. Consequently, a system containing three trained ML models is proposed to first predict the stability status (random forest classification, RFC) followed by 1) the cantilever top horizontal displacement of sheet wall (artificial neural network regression models, RANN1) and 2) vertical settlement of soil (RANN2). The uncertainty of this data-driven system is partially investigated by developing 1000 RFC models, based on the application of random sampling technique in the data splitting process. Investigation on the distribution of the evaluation metrics reveals negative skewed data toward the 1.0000 value. This implies a high performance of RFC on the database with medians of accuracy, precision, and recall, on test set are 1.0000, 1.0000, and 0.92857, respectively. The regression ANN models have coefficient of determinations on test set, as high as 0.9521 for RANN1, and 0.9988 for RANN2, respectively. The parametric study for these regressions is also provided to evaluate the relative insight influence of inputs to output.</description><subject>Artificial neural networks</subject><subject>Cities</subject><subject>Civil Engineering</subject><subject>Countries</subject><subject>Engineering</subject><subject>Finite element method</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Random sampling</subject><subject>Regions</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Research Article</subject><subject>Sampling methods</subject><subject>Soil settlement</subject><subject>Soils</subject><subject>Stability analysis</subject><subject>Statistical sampling</subject><subject>Test sets</subject><issn>2095-2430</issn><issn>2095-2449</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQx4MoWGo_gLeA59W8uskeS_EFghc9h2x24qZsNzVJK_32pqzoyTnMzOH_gB9C15TcUkLkXaJUkqYijFVElSXO0IyRZlkxIZrz35-TS7RIaUMIoURyovgMmRXuPUQTbe-tGXA6pgxbnAPeRei8zbiF3hx8iDg4nIIfsBk7bM2Y_QAHiDj1ABl_mWHA7RF3Jpuqi_4AI96GDoZ0hS6cGRIsfu4cvT_cv62fqpfXx-f16qWynMpcOaaEdJbSxrKlg3oJ0rLWUqFMWwtRC0u4M4qb2ilQLZENtE6yMsI0lhs-RzdT7i6Gzz2krDdhH8dSqZnkJYByxYuKTiobQ0oRnN5FvzXxqCnRJ5h6gqkLTH2CqUXxsMmTinb8gPiX_L_pG8N3dyM</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Bui, Nang Duc</creator><creator>Phan, Hieu Chi</creator><creator>Pham, Tiep Duc</creator><creator>Dhar, Ashutosh Sutra</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>A hierarchical system to predict behavior of soil and cantilever sheet wall by data-driven models</title><author>Bui, Nang Duc ; Phan, Hieu Chi ; Pham, Tiep Duc ; Dhar, Ashutosh Sutra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-f2847fc119c25fe65e7c2bc148ab64464c03fa83a6f8e8b079ebf722224a9c3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Cities</topic><topic>Civil Engineering</topic><topic>Countries</topic><topic>Engineering</topic><topic>Finite element method</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Random sampling</topic><topic>Regions</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Research Article</topic><topic>Sampling methods</topic><topic>Soil settlement</topic><topic>Soils</topic><topic>Stability analysis</topic><topic>Statistical sampling</topic><topic>Test sets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui, Nang Duc</creatorcontrib><creatorcontrib>Phan, Hieu Chi</creatorcontrib><creatorcontrib>Pham, Tiep Duc</creatorcontrib><creatorcontrib>Dhar, Ashutosh Sutra</creatorcontrib><collection>CrossRef</collection><jtitle>Frontiers of Structural and Civil Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bui, Nang Duc</au><au>Phan, Hieu Chi</au><au>Pham, Tiep Duc</au><au>Dhar, Ashutosh Sutra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hierarchical system to predict behavior of soil and cantilever sheet wall by data-driven models</atitle><jtitle>Frontiers of Structural and Civil Engineering</jtitle><stitle>Front. Struct. Civ. Eng</stitle><date>2022-06-01</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>667</spage><epage>684</epage><pages>667-684</pages><issn>2095-2430</issn><eissn>2095-2449</eissn><abstract>The study proposes a framework combining machine learning (ML) models into a logical hierarchical system which evaluates the stability of the sheet wall before other predictions. The study uses the hardening soil (HS) model to develop a 200-sample finite element analysis (FEA) database, to develop the ML models. Consequently, a system containing three trained ML models is proposed to first predict the stability status (random forest classification, RFC) followed by 1) the cantilever top horizontal displacement of sheet wall (artificial neural network regression models, RANN1) and 2) vertical settlement of soil (RANN2). The uncertainty of this data-driven system is partially investigated by developing 1000 RFC models, based on the application of random sampling technique in the data splitting process. Investigation on the distribution of the evaluation metrics reveals negative skewed data toward the 1.0000 value. This implies a high performance of RFC on the database with medians of accuracy, precision, and recall, on test set are 1.0000, 1.0000, and 0.92857, respectively. The regression ANN models have coefficient of determinations on test set, as high as 0.9521 for RANN1, and 0.9988 for RANN2, respectively. The parametric study for these regressions is also provided to evaluate the relative insight influence of inputs to output.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s11709-022-0822-4</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-2430
ispartof Frontiers of Structural and Civil Engineering, 2022-06, Vol.16 (6), p.667-684
issn 2095-2430
2095-2449
language eng
recordid cdi_proquest_journals_2734641383
source SpringerLink Journals - AutoHoldings
subjects Artificial neural networks
Cities
Civil Engineering
Countries
Engineering
Finite element method
Machine learning
Mathematical models
Neural networks
Random sampling
Regions
Regression analysis
Regression models
Research Article
Sampling methods
Soil settlement
Soils
Stability analysis
Statistical sampling
Test sets
title A hierarchical system to predict behavior of soil and cantilever sheet wall by data-driven models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hierarchical%20system%20to%20predict%20behavior%20of%20soil%20and%20cantilever%20sheet%20wall%20by%20data-driven%20models&rft.jtitle=Frontiers%20of%20Structural%20and%20Civil%20Engineering&rft.au=Bui,%20Nang%20Duc&rft.date=2022-06-01&rft.volume=16&rft.issue=6&rft.spage=667&rft.epage=684&rft.pages=667-684&rft.issn=2095-2430&rft.eissn=2095-2449&rft_id=info:doi/10.1007/s11709-022-0822-4&rft_dat=%3Cproquest_cross%3E2734641383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734641383&rft_id=info:pmid/&rfr_iscdi=true