Edge Machine Learning for the Automated Decision and Visual Computing of the Robots, IoT Embedded Devices or UAV-Drones

This paper presents edge machine learning (ML) technology and the challenges of its implementation into various proof-of-concept solutions developed by the authors. Paper presents the concept of Edge ML from a variety of perspectives, describing different implementations such as: a tech-glove smart...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-11, Vol.11 (21), p.3507
Hauptverfasser: Toma, Cristian, Popa, Marius, Iancu, Bogdan, Doinea, Mihai, Pascu, Andreea, Ioan-Dutescu, Filip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 3507
container_title Electronics (Basel)
container_volume 11
creator Toma, Cristian
Popa, Marius
Iancu, Bogdan
Doinea, Mihai
Pascu, Andreea
Ioan-Dutescu, Filip
description This paper presents edge machine learning (ML) technology and the challenges of its implementation into various proof-of-concept solutions developed by the authors. Paper presents the concept of Edge ML from a variety of perspectives, describing different implementations such as: a tech-glove smart device (IoT embedded device) for controlling teleoperated robots or an UAVs (unmanned aerial vehicles/drones) that is processing data locally (at the device level) using machine learning techniques and artificial intelligence neural networks (deep learning algorithms), to make decisions without interrogating the cloud platforms. Implementation challenges used in Edge ML are described and analyzed in comparisons with other solutions. An IoT embedded device integrated into a tech glove, which controls a teleoperated robot, is used to run the AI neural network inference. The neural network was trained in an ML cloud for better control. Implementation developments, behind the UAV device capable of visual computation using machine learning, are presented.
doi_str_mv 10.3390/electronics11213507
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2734621955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745597840</galeid><sourcerecordid>A745597840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-cf4fcffd852cc81853b4e99630736d6dd22ae616efbb366c8612778126a9b6503</originalsourceid><addsrcrecordid>eNptUU1LAzEQXUTBov0FXgJe3ZqP3ezmWNqqhYogba9LNpm0Kd1NTbKK_95t68GDM4cZhvfePHhJckfwiDGBH2EPKnrXWhUIoYTluLhIBhQXIhVU0Ms_-3UyDGGH-xKElQwPkq-Z3gB6lWprW0ALkL617QYZ51HcAhp30TUygkZTUDZY1yLZarS2oZN7NHHNoYtHvDMn-LurXQwPaO6WaNbUoPWJ-WkVBNRLrsbrdNpbhXCbXBm5DzD8nTfJ6mm2nLyki7fn-WS8SBXjJKbKZEYZo8ucKlWSMmd1BkJwhgvGNdeaUgmccDB1zThXJSe0KEpCuRQ1zzG7Se7PugfvPjoIsdq5zrf9y4oWLOOUiDzvUaMzaiP3UNnWuOil6ltDY1Xv19j-Pi6yPBdFmR1l2ZmgvAvBg6kO3jbSf1cEV8dUqn9SYT_nAYIR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734621955</pqid></control><display><type>article</type><title>Edge Machine Learning for the Automated Decision and Visual Computing of the Robots, IoT Embedded Devices or UAV-Drones</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Toma, Cristian ; Popa, Marius ; Iancu, Bogdan ; Doinea, Mihai ; Pascu, Andreea ; Ioan-Dutescu, Filip</creator><creatorcontrib>Toma, Cristian ; Popa, Marius ; Iancu, Bogdan ; Doinea, Mihai ; Pascu, Andreea ; Ioan-Dutescu, Filip</creatorcontrib><description>This paper presents edge machine learning (ML) technology and the challenges of its implementation into various proof-of-concept solutions developed by the authors. Paper presents the concept of Edge ML from a variety of perspectives, describing different implementations such as: a tech-glove smart device (IoT embedded device) for controlling teleoperated robots or an UAVs (unmanned aerial vehicles/drones) that is processing data locally (at the device level) using machine learning techniques and artificial intelligence neural networks (deep learning algorithms), to make decisions without interrogating the cloud platforms. Implementation challenges used in Edge ML are described and analyzed in comparisons with other solutions. An IoT embedded device integrated into a tech glove, which controls a teleoperated robot, is used to run the AI neural network inference. The neural network was trained in an ML cloud for better control. Implementation developments, behind the UAV device capable of visual computation using machine learning, are presented.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11213507</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Cloud computing ; Data mining ; Data processing ; Deep learning ; Drone aircraft ; Drone vehicles ; Electronic devices ; Embedded systems ; Internet of Things ; Machine learning ; Neural networks ; Robots ; Sensors ; Unmanned aerial vehicles</subject><ispartof>Electronics (Basel), 2022-11, Vol.11 (21), p.3507</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-cf4fcffd852cc81853b4e99630736d6dd22ae616efbb366c8612778126a9b6503</citedby><cites>FETCH-LOGICAL-c361t-cf4fcffd852cc81853b4e99630736d6dd22ae616efbb366c8612778126a9b6503</cites><orcidid>0000-0002-8159-4028 ; 0000-0001-8296-8389 ; 0000-0001-9316-7739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Toma, Cristian</creatorcontrib><creatorcontrib>Popa, Marius</creatorcontrib><creatorcontrib>Iancu, Bogdan</creatorcontrib><creatorcontrib>Doinea, Mihai</creatorcontrib><creatorcontrib>Pascu, Andreea</creatorcontrib><creatorcontrib>Ioan-Dutescu, Filip</creatorcontrib><title>Edge Machine Learning for the Automated Decision and Visual Computing of the Robots, IoT Embedded Devices or UAV-Drones</title><title>Electronics (Basel)</title><description>This paper presents edge machine learning (ML) technology and the challenges of its implementation into various proof-of-concept solutions developed by the authors. Paper presents the concept of Edge ML from a variety of perspectives, describing different implementations such as: a tech-glove smart device (IoT embedded device) for controlling teleoperated robots or an UAVs (unmanned aerial vehicles/drones) that is processing data locally (at the device level) using machine learning techniques and artificial intelligence neural networks (deep learning algorithms), to make decisions without interrogating the cloud platforms. Implementation challenges used in Edge ML are described and analyzed in comparisons with other solutions. An IoT embedded device integrated into a tech glove, which controls a teleoperated robot, is used to run the AI neural network inference. The neural network was trained in an ML cloud for better control. Implementation developments, behind the UAV device capable of visual computation using machine learning, are presented.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Cloud computing</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Drone aircraft</subject><subject>Drone vehicles</subject><subject>Electronic devices</subject><subject>Embedded systems</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Robots</subject><subject>Sensors</subject><subject>Unmanned aerial vehicles</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUU1LAzEQXUTBov0FXgJe3ZqP3ezmWNqqhYogba9LNpm0Kd1NTbKK_95t68GDM4cZhvfePHhJckfwiDGBH2EPKnrXWhUIoYTluLhIBhQXIhVU0Ms_-3UyDGGH-xKElQwPkq-Z3gB6lWprW0ALkL617QYZ51HcAhp30TUygkZTUDZY1yLZarS2oZN7NHHNoYtHvDMn-LurXQwPaO6WaNbUoPWJ-WkVBNRLrsbrdNpbhXCbXBm5DzD8nTfJ6mm2nLyki7fn-WS8SBXjJKbKZEYZo8ucKlWSMmd1BkJwhgvGNdeaUgmccDB1zThXJSe0KEpCuRQ1zzG7Se7PugfvPjoIsdq5zrf9y4oWLOOUiDzvUaMzaiP3UNnWuOil6ltDY1Xv19j-Pi6yPBdFmR1l2ZmgvAvBg6kO3jbSf1cEV8dUqn9SYT_nAYIR</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Toma, Cristian</creator><creator>Popa, Marius</creator><creator>Iancu, Bogdan</creator><creator>Doinea, Mihai</creator><creator>Pascu, Andreea</creator><creator>Ioan-Dutescu, Filip</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8159-4028</orcidid><orcidid>https://orcid.org/0000-0001-8296-8389</orcidid><orcidid>https://orcid.org/0000-0001-9316-7739</orcidid></search><sort><creationdate>20221101</creationdate><title>Edge Machine Learning for the Automated Decision and Visual Computing of the Robots, IoT Embedded Devices or UAV-Drones</title><author>Toma, Cristian ; Popa, Marius ; Iancu, Bogdan ; Doinea, Mihai ; Pascu, Andreea ; Ioan-Dutescu, Filip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-cf4fcffd852cc81853b4e99630736d6dd22ae616efbb366c8612778126a9b6503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Cloud computing</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Drone aircraft</topic><topic>Drone vehicles</topic><topic>Electronic devices</topic><topic>Embedded systems</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Robots</topic><topic>Sensors</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toma, Cristian</creatorcontrib><creatorcontrib>Popa, Marius</creatorcontrib><creatorcontrib>Iancu, Bogdan</creatorcontrib><creatorcontrib>Doinea, Mihai</creatorcontrib><creatorcontrib>Pascu, Andreea</creatorcontrib><creatorcontrib>Ioan-Dutescu, Filip</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toma, Cristian</au><au>Popa, Marius</au><au>Iancu, Bogdan</au><au>Doinea, Mihai</au><au>Pascu, Andreea</au><au>Ioan-Dutescu, Filip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Machine Learning for the Automated Decision and Visual Computing of the Robots, IoT Embedded Devices or UAV-Drones</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>11</volume><issue>21</issue><spage>3507</spage><pages>3507-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This paper presents edge machine learning (ML) technology and the challenges of its implementation into various proof-of-concept solutions developed by the authors. Paper presents the concept of Edge ML from a variety of perspectives, describing different implementations such as: a tech-glove smart device (IoT embedded device) for controlling teleoperated robots or an UAVs (unmanned aerial vehicles/drones) that is processing data locally (at the device level) using machine learning techniques and artificial intelligence neural networks (deep learning algorithms), to make decisions without interrogating the cloud platforms. Implementation challenges used in Edge ML are described and analyzed in comparisons with other solutions. An IoT embedded device integrated into a tech glove, which controls a teleoperated robot, is used to run the AI neural network inference. The neural network was trained in an ML cloud for better control. Implementation developments, behind the UAV device capable of visual computation using machine learning, are presented.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11213507</doi><orcidid>https://orcid.org/0000-0002-8159-4028</orcidid><orcidid>https://orcid.org/0000-0001-8296-8389</orcidid><orcidid>https://orcid.org/0000-0001-9316-7739</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-11, Vol.11 (21), p.3507
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2734621955
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Artificial intelligence
Automation
Cloud computing
Data mining
Data processing
Deep learning
Drone aircraft
Drone vehicles
Electronic devices
Embedded systems
Internet of Things
Machine learning
Neural networks
Robots
Sensors
Unmanned aerial vehicles
title Edge Machine Learning for the Automated Decision and Visual Computing of the Robots, IoT Embedded Devices or UAV-Drones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Machine%20Learning%20for%20the%20Automated%20Decision%20and%20Visual%20Computing%20of%20the%20Robots,%20IoT%20Embedded%20Devices%20or%20UAV-Drones&rft.jtitle=Electronics%20(Basel)&rft.au=Toma,%20Cristian&rft.date=2022-11-01&rft.volume=11&rft.issue=21&rft.spage=3507&rft.pages=3507-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11213507&rft_dat=%3Cgale_proqu%3EA745597840%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734621955&rft_id=info:pmid/&rft_galeid=A745597840&rfr_iscdi=true