Edge Machine Learning for the Automated Decision and Visual Computing of the Robots, IoT Embedded Devices or UAV-Drones
This paper presents edge machine learning (ML) technology and the challenges of its implementation into various proof-of-concept solutions developed by the authors. Paper presents the concept of Edge ML from a variety of perspectives, describing different implementations such as: a tech-glove smart...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-11, Vol.11 (21), p.3507 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | 3507 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Toma, Cristian Popa, Marius Iancu, Bogdan Doinea, Mihai Pascu, Andreea Ioan-Dutescu, Filip |
description | This paper presents edge machine learning (ML) technology and the challenges of its implementation into various proof-of-concept solutions developed by the authors. Paper presents the concept of Edge ML from a variety of perspectives, describing different implementations such as: a tech-glove smart device (IoT embedded device) for controlling teleoperated robots or an UAVs (unmanned aerial vehicles/drones) that is processing data locally (at the device level) using machine learning techniques and artificial intelligence neural networks (deep learning algorithms), to make decisions without interrogating the cloud platforms. Implementation challenges used in Edge ML are described and analyzed in comparisons with other solutions. An IoT embedded device integrated into a tech glove, which controls a teleoperated robot, is used to run the AI neural network inference. The neural network was trained in an ML cloud for better control. Implementation developments, behind the UAV device capable of visual computation using machine learning, are presented. |
doi_str_mv | 10.3390/electronics11213507 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2734621955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745597840</galeid><sourcerecordid>A745597840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-cf4fcffd852cc81853b4e99630736d6dd22ae616efbb366c8612778126a9b6503</originalsourceid><addsrcrecordid>eNptUU1LAzEQXUTBov0FXgJe3ZqP3ezmWNqqhYogba9LNpm0Kd1NTbKK_95t68GDM4cZhvfePHhJckfwiDGBH2EPKnrXWhUIoYTluLhIBhQXIhVU0Ms_-3UyDGGH-xKElQwPkq-Z3gB6lWprW0ALkL617QYZ51HcAhp30TUygkZTUDZY1yLZarS2oZN7NHHNoYtHvDMn-LurXQwPaO6WaNbUoPWJ-WkVBNRLrsbrdNpbhXCbXBm5DzD8nTfJ6mm2nLyki7fn-WS8SBXjJKbKZEYZo8ucKlWSMmd1BkJwhgvGNdeaUgmccDB1zThXJSe0KEpCuRQ1zzG7Se7PugfvPjoIsdq5zrf9y4oWLOOUiDzvUaMzaiP3UNnWuOil6ltDY1Xv19j-Pi6yPBdFmR1l2ZmgvAvBg6kO3jbSf1cEV8dUqn9SYT_nAYIR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734621955</pqid></control><display><type>article</type><title>Edge Machine Learning for the Automated Decision and Visual Computing of the Robots, IoT Embedded Devices or UAV-Drones</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Toma, Cristian ; Popa, Marius ; Iancu, Bogdan ; Doinea, Mihai ; Pascu, Andreea ; Ioan-Dutescu, Filip</creator><creatorcontrib>Toma, Cristian ; Popa, Marius ; Iancu, Bogdan ; Doinea, Mihai ; Pascu, Andreea ; Ioan-Dutescu, Filip</creatorcontrib><description>This paper presents edge machine learning (ML) technology and the challenges of its implementation into various proof-of-concept solutions developed by the authors. Paper presents the concept of Edge ML from a variety of perspectives, describing different implementations such as: a tech-glove smart device (IoT embedded device) for controlling teleoperated robots or an UAVs (unmanned aerial vehicles/drones) that is processing data locally (at the device level) using machine learning techniques and artificial intelligence neural networks (deep learning algorithms), to make decisions without interrogating the cloud platforms. Implementation challenges used in Edge ML are described and analyzed in comparisons with other solutions. An IoT embedded device integrated into a tech glove, which controls a teleoperated robot, is used to run the AI neural network inference. The neural network was trained in an ML cloud for better control. Implementation developments, behind the UAV device capable of visual computation using machine learning, are presented.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11213507</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Automation ; Cloud computing ; Data mining ; Data processing ; Deep learning ; Drone aircraft ; Drone vehicles ; Electronic devices ; Embedded systems ; Internet of Things ; Machine learning ; Neural networks ; Robots ; Sensors ; Unmanned aerial vehicles</subject><ispartof>Electronics (Basel), 2022-11, Vol.11 (21), p.3507</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-cf4fcffd852cc81853b4e99630736d6dd22ae616efbb366c8612778126a9b6503</citedby><cites>FETCH-LOGICAL-c361t-cf4fcffd852cc81853b4e99630736d6dd22ae616efbb366c8612778126a9b6503</cites><orcidid>0000-0002-8159-4028 ; 0000-0001-8296-8389 ; 0000-0001-9316-7739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Toma, Cristian</creatorcontrib><creatorcontrib>Popa, Marius</creatorcontrib><creatorcontrib>Iancu, Bogdan</creatorcontrib><creatorcontrib>Doinea, Mihai</creatorcontrib><creatorcontrib>Pascu, Andreea</creatorcontrib><creatorcontrib>Ioan-Dutescu, Filip</creatorcontrib><title>Edge Machine Learning for the Automated Decision and Visual Computing of the Robots, IoT Embedded Devices or UAV-Drones</title><title>Electronics (Basel)</title><description>This paper presents edge machine learning (ML) technology and the challenges of its implementation into various proof-of-concept solutions developed by the authors. Paper presents the concept of Edge ML from a variety of perspectives, describing different implementations such as: a tech-glove smart device (IoT embedded device) for controlling teleoperated robots or an UAVs (unmanned aerial vehicles/drones) that is processing data locally (at the device level) using machine learning techniques and artificial intelligence neural networks (deep learning algorithms), to make decisions without interrogating the cloud platforms. Implementation challenges used in Edge ML are described and analyzed in comparisons with other solutions. An IoT embedded device integrated into a tech glove, which controls a teleoperated robot, is used to run the AI neural network inference. The neural network was trained in an ML cloud for better control. Implementation developments, behind the UAV device capable of visual computation using machine learning, are presented.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Cloud computing</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Drone aircraft</subject><subject>Drone vehicles</subject><subject>Electronic devices</subject><subject>Embedded systems</subject><subject>Internet of Things</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Robots</subject><subject>Sensors</subject><subject>Unmanned aerial vehicles</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUU1LAzEQXUTBov0FXgJe3ZqP3ezmWNqqhYogba9LNpm0Kd1NTbKK_95t68GDM4cZhvfePHhJckfwiDGBH2EPKnrXWhUIoYTluLhIBhQXIhVU0Ms_-3UyDGGH-xKElQwPkq-Z3gB6lWprW0ALkL617QYZ51HcAhp30TUygkZTUDZY1yLZarS2oZN7NHHNoYtHvDMn-LurXQwPaO6WaNbUoPWJ-WkVBNRLrsbrdNpbhXCbXBm5DzD8nTfJ6mm2nLyki7fn-WS8SBXjJKbKZEYZo8ucKlWSMmd1BkJwhgvGNdeaUgmccDB1zThXJSe0KEpCuRQ1zzG7Se7PugfvPjoIsdq5zrf9y4oWLOOUiDzvUaMzaiP3UNnWuOil6ltDY1Xv19j-Pi6yPBdFmR1l2ZmgvAvBg6kO3jbSf1cEV8dUqn9SYT_nAYIR</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Toma, Cristian</creator><creator>Popa, Marius</creator><creator>Iancu, Bogdan</creator><creator>Doinea, Mihai</creator><creator>Pascu, Andreea</creator><creator>Ioan-Dutescu, Filip</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8159-4028</orcidid><orcidid>https://orcid.org/0000-0001-8296-8389</orcidid><orcidid>https://orcid.org/0000-0001-9316-7739</orcidid></search><sort><creationdate>20221101</creationdate><title>Edge Machine Learning for the Automated Decision and Visual Computing of the Robots, IoT Embedded Devices or UAV-Drones</title><author>Toma, Cristian ; Popa, Marius ; Iancu, Bogdan ; Doinea, Mihai ; Pascu, Andreea ; Ioan-Dutescu, Filip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-cf4fcffd852cc81853b4e99630736d6dd22ae616efbb366c8612778126a9b6503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Cloud computing</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Drone aircraft</topic><topic>Drone vehicles</topic><topic>Electronic devices</topic><topic>Embedded systems</topic><topic>Internet of Things</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Robots</topic><topic>Sensors</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toma, Cristian</creatorcontrib><creatorcontrib>Popa, Marius</creatorcontrib><creatorcontrib>Iancu, Bogdan</creatorcontrib><creatorcontrib>Doinea, Mihai</creatorcontrib><creatorcontrib>Pascu, Andreea</creatorcontrib><creatorcontrib>Ioan-Dutescu, Filip</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toma, Cristian</au><au>Popa, Marius</au><au>Iancu, Bogdan</au><au>Doinea, Mihai</au><au>Pascu, Andreea</au><au>Ioan-Dutescu, Filip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Machine Learning for the Automated Decision and Visual Computing of the Robots, IoT Embedded Devices or UAV-Drones</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-11-01</date><risdate>2022</risdate><volume>11</volume><issue>21</issue><spage>3507</spage><pages>3507-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>This paper presents edge machine learning (ML) technology and the challenges of its implementation into various proof-of-concept solutions developed by the authors. Paper presents the concept of Edge ML from a variety of perspectives, describing different implementations such as: a tech-glove smart device (IoT embedded device) for controlling teleoperated robots or an UAVs (unmanned aerial vehicles/drones) that is processing data locally (at the device level) using machine learning techniques and artificial intelligence neural networks (deep learning algorithms), to make decisions without interrogating the cloud platforms. Implementation challenges used in Edge ML are described and analyzed in comparisons with other solutions. An IoT embedded device integrated into a tech glove, which controls a teleoperated robot, is used to run the AI neural network inference. The neural network was trained in an ML cloud for better control. Implementation developments, behind the UAV device capable of visual computation using machine learning, are presented.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11213507</doi><orcidid>https://orcid.org/0000-0002-8159-4028</orcidid><orcidid>https://orcid.org/0000-0001-8296-8389</orcidid><orcidid>https://orcid.org/0000-0001-9316-7739</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-11, Vol.11 (21), p.3507 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2734621955 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Artificial intelligence Automation Cloud computing Data mining Data processing Deep learning Drone aircraft Drone vehicles Electronic devices Embedded systems Internet of Things Machine learning Neural networks Robots Sensors Unmanned aerial vehicles |
title | Edge Machine Learning for the Automated Decision and Visual Computing of the Robots, IoT Embedded Devices or UAV-Drones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Machine%20Learning%20for%20the%20Automated%20Decision%20and%20Visual%20Computing%20of%20the%20Robots,%20IoT%20Embedded%20Devices%20or%20UAV-Drones&rft.jtitle=Electronics%20(Basel)&rft.au=Toma,%20Cristian&rft.date=2022-11-01&rft.volume=11&rft.issue=21&rft.spage=3507&rft.pages=3507-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11213507&rft_dat=%3Cgale_proqu%3EA745597840%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734621955&rft_id=info:pmid/&rft_galeid=A745597840&rfr_iscdi=true |