Algebra in probabilistic reasoning
This short expository paper outlines applications of computer algebra to the implication problem of conditional independence for Gaussian random variables. We touch on certificates for validity and invalidity of inference rules from the perspective of reproducibility of research data, computational...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Boege, Tobias |
description | This short expository paper outlines applications of computer algebra to the implication problem of conditional independence for Gaussian random variables. We touch on certificates for validity and invalidity of inference rules from the perspective of reproducibility of research data, computational complexity of the inference problem and draw a parallel to automated theorem proving in synthetic geometry. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2734431970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734431970</sourcerecordid><originalsourceid>FETCH-proquest_journals_27344319703</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQcsxJT00qSlTIzFMoKMpPSkzKzMksLslMVihKTSzOz8vMS-dhYE1LzClO5YXS3AzKbq4hzh66QPWFpanFJfFZ-aVFeUCpeCNzYxMTY0NLcwNj4lQBAHCbLgk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734431970</pqid></control><display><type>article</type><title>Algebra in probabilistic reasoning</title><source>Free E- Journals</source><creator>Boege, Tobias</creator><creatorcontrib>Boege, Tobias</creatorcontrib><description>This short expository paper outlines applications of computer algebra to the implication problem of conditional independence for Gaussian random variables. We touch on certificates for validity and invalidity of inference rules from the perspective of reproducibility of research data, computational complexity of the inference problem and draw a parallel to automated theorem proving in synthetic geometry.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer algebra ; Inference ; Random variables</subject><ispartof>arXiv.org, 2022-11</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Boege, Tobias</creatorcontrib><title>Algebra in probabilistic reasoning</title><title>arXiv.org</title><description>This short expository paper outlines applications of computer algebra to the implication problem of conditional independence for Gaussian random variables. We touch on certificates for validity and invalidity of inference rules from the perspective of reproducibility of research data, computational complexity of the inference problem and draw a parallel to automated theorem proving in synthetic geometry.</description><subject>Computer algebra</subject><subject>Inference</subject><subject>Random variables</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQcsxJT00qSlTIzFMoKMpPSkzKzMksLslMVihKTSzOz8vMS-dhYE1LzClO5YXS3AzKbq4hzh66QPWFpanFJfFZ-aVFeUCpeCNzYxMTY0NLcwNj4lQBAHCbLgk</recordid><startdate>20221108</startdate><enddate>20221108</enddate><creator>Boege, Tobias</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20221108</creationdate><title>Algebra in probabilistic reasoning</title><author>Boege, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27344319703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer algebra</topic><topic>Inference</topic><topic>Random variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Boege, Tobias</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boege, Tobias</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Algebra in probabilistic reasoning</atitle><jtitle>arXiv.org</jtitle><date>2022-11-08</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This short expository paper outlines applications of computer algebra to the implication problem of conditional independence for Gaussian random variables. We touch on certificates for validity and invalidity of inference rules from the perspective of reproducibility of research data, computational complexity of the inference problem and draw a parallel to automated theorem proving in synthetic geometry.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2734431970 |
source | Free E- Journals |
subjects | Computer algebra Inference Random variables |
title | Algebra in probabilistic reasoning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Algebra%20in%20probabilistic%20reasoning&rft.jtitle=arXiv.org&rft.au=Boege,%20Tobias&rft.date=2022-11-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2734431970%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734431970&rft_id=info:pmid/&rfr_iscdi=true |