Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision

The tire-road peak adhesion coefficient (TRPAC) describes the tire adhesion limit that a road can provide. The TRPAC is a key parameter for precise vehicle motion control and an important basis for decision-making and planning of intelligent vehicles. Considering the critical and difficult problems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-11, Vol.23 (11), p.21740-21752
Hauptverfasser: Leng, Bo, Jin, Da, Hou, Xinchen, Tian, Cheng, Xiong, Lu, Yu, Zhuoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21752
container_issue 11
container_start_page 21740
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Leng, Bo
Jin, Da
Hou, Xinchen
Tian, Cheng
Xiong, Lu
Yu, Zhuoping
description The tire-road peak adhesion coefficient (TRPAC) describes the tire adhesion limit that a road can provide. The TRPAC is a key parameter for precise vehicle motion control and an important basis for decision-making and planning of intelligent vehicles. Considering the critical and difficult problems in the estimation of TRPAC, such as slow convergence and low accuracy, a TRPAC estimation method based on the fusion of vehicle dynamics and machine vision is proposed in this paper. Based on the observability theory of nonlinear systems, local weak observability of the dynamics-based estimator is analyzed to explain the limitation of a single dynamics-based estimator. The framework of dynamics-image-based fusion estimator is then proposed, including the fusion of data, model and decision levels. A dynamics-based fusion estimator is designed by considering the coupling relationship of longitudinal and lateral tire forces to adapt the conditions of complex excitations. Start-and-stop strategy for the dynamics-based fusion estimator is designed by setting excitation thresholds for different types of road surfaces, which are identified using vision information. Parameter self-tuning for the dynamics-based fusion estimator based on the image-based estimator is proposed to improve convergence speed and reduce oscillation. The results of the simulation and vehicle test show that the road estimation error of the proposed method is within 0.03 and the convergence time is within 0.5 s. Compared with other existing estimators, the fusion estimator achieved better accuracy, sensitivity and stability, particularly when complex excitations were present.
doi_str_mv 10.1109/TITS.2022.3183691
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2734387594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9802509</ieee_id><sourcerecordid>2734387594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-a370daa10041d6a18b096556b39dbd6820b189f87c3f771929238de3c98ba9293</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxAYiNJdYpfsSJvSylhUqtQBC6tRx7orq0cYnTRf-ehFasZubq3BnNReiOkiGlRD0Ws-JzyAhjQ04lzxQ9QwMqhEwIodl537M0UUSQS3QV47pTU0HpAG0K30DyEYzD72C-8citIPpQ43GAqvLWQ93iSWz91rS9vIB2FRx-MhEc7ubp_o8OFV7CytsN4OdDbbbeRmxqhxfGrnwNeOl77AZdVGYT4fZUr9HXdFKMX5P528tsPJonljHeJobnxBlDCUmpywyVJVGZEFnJlStdJhkpqVSVzC2v8pwqphiXDrhVsjTdxK_Rw3Hvrgk_e4itXod9U3cnNct5ymUuVNpR9EjZJsTYQKV3Tfdmc9CU6D5U3Yeq-1D1KdTOc3_0eAD455UkTBDFfwGr1HH6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734387594</pqid></control><display><type>article</type><title>Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision</title><source>IEEE Electronic Library Online</source><creator>Leng, Bo ; Jin, Da ; Hou, Xinchen ; Tian, Cheng ; Xiong, Lu ; Yu, Zhuoping</creator><creatorcontrib>Leng, Bo ; Jin, Da ; Hou, Xinchen ; Tian, Cheng ; Xiong, Lu ; Yu, Zhuoping</creatorcontrib><description>The tire-road peak adhesion coefficient (TRPAC) describes the tire adhesion limit that a road can provide. The TRPAC is a key parameter for precise vehicle motion control and an important basis for decision-making and planning of intelligent vehicles. Considering the critical and difficult problems in the estimation of TRPAC, such as slow convergence and low accuracy, a TRPAC estimation method based on the fusion of vehicle dynamics and machine vision is proposed in this paper. Based on the observability theory of nonlinear systems, local weak observability of the dynamics-based estimator is analyzed to explain the limitation of a single dynamics-based estimator. The framework of dynamics-image-based fusion estimator is then proposed, including the fusion of data, model and decision levels. A dynamics-based fusion estimator is designed by considering the coupling relationship of longitudinal and lateral tire forces to adapt the conditions of complex excitations. Start-and-stop strategy for the dynamics-based fusion estimator is designed by setting excitation thresholds for different types of road surfaces, which are identified using vision information. Parameter self-tuning for the dynamics-based fusion estimator based on the image-based estimator is proposed to improve convergence speed and reduce oscillation. The results of the simulation and vehicle test show that the road estimation error of the proposed method is within 0.03 and the convergence time is within 0.5 s. Compared with other existing estimators, the fusion estimator achieved better accuracy, sensitivity and stability, particularly when complex excitations were present.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3183691</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adhesion ; Adhesives ; Convergence ; Decision making ; Dynamical systems ; Estimation ; Excitation ; Force ; intelligent vehicle ; Intelligent vehicles ; Machine vision ; Motion control ; multisource information fusion ; Nonlinear systems ; Observability ; Parameter identification ; Roads ; Self tuning ; Tire force ; Tire-road peak adhesion coefficient ; Tires ; Vehicle dynamics ; Vision systems</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-11, Vol.23 (11), p.21740-21752</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-a370daa10041d6a18b096556b39dbd6820b189f87c3f771929238de3c98ba9293</citedby><cites>FETCH-LOGICAL-c223t-a370daa10041d6a18b096556b39dbd6820b189f87c3f771929238de3c98ba9293</cites><orcidid>0000-0003-3513-1708 ; 0000-0002-1673-2658 ; 0000-0002-6354-8001 ; 0000-0003-4873-7071 ; 0000-0002-8775-0052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9802509$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9802509$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leng, Bo</creatorcontrib><creatorcontrib>Jin, Da</creatorcontrib><creatorcontrib>Hou, Xinchen</creatorcontrib><creatorcontrib>Tian, Cheng</creatorcontrib><creatorcontrib>Xiong, Lu</creatorcontrib><creatorcontrib>Yu, Zhuoping</creatorcontrib><title>Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The tire-road peak adhesion coefficient (TRPAC) describes the tire adhesion limit that a road can provide. The TRPAC is a key parameter for precise vehicle motion control and an important basis for decision-making and planning of intelligent vehicles. Considering the critical and difficult problems in the estimation of TRPAC, such as slow convergence and low accuracy, a TRPAC estimation method based on the fusion of vehicle dynamics and machine vision is proposed in this paper. Based on the observability theory of nonlinear systems, local weak observability of the dynamics-based estimator is analyzed to explain the limitation of a single dynamics-based estimator. The framework of dynamics-image-based fusion estimator is then proposed, including the fusion of data, model and decision levels. A dynamics-based fusion estimator is designed by considering the coupling relationship of longitudinal and lateral tire forces to adapt the conditions of complex excitations. Start-and-stop strategy for the dynamics-based fusion estimator is designed by setting excitation thresholds for different types of road surfaces, which are identified using vision information. Parameter self-tuning for the dynamics-based fusion estimator based on the image-based estimator is proposed to improve convergence speed and reduce oscillation. The results of the simulation and vehicle test show that the road estimation error of the proposed method is within 0.03 and the convergence time is within 0.5 s. Compared with other existing estimators, the fusion estimator achieved better accuracy, sensitivity and stability, particularly when complex excitations were present.</description><subject>Accuracy</subject><subject>Adhesion</subject><subject>Adhesives</subject><subject>Convergence</subject><subject>Decision making</subject><subject>Dynamical systems</subject><subject>Estimation</subject><subject>Excitation</subject><subject>Force</subject><subject>intelligent vehicle</subject><subject>Intelligent vehicles</subject><subject>Machine vision</subject><subject>Motion control</subject><subject>multisource information fusion</subject><subject>Nonlinear systems</subject><subject>Observability</subject><subject>Parameter identification</subject><subject>Roads</subject><subject>Self tuning</subject><subject>Tire force</subject><subject>Tire-road peak adhesion coefficient</subject><subject>Tires</subject><subject>Vehicle dynamics</subject><subject>Vision systems</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEuXxAYiNJdYpfsSJvSylhUqtQBC6tRx7orq0cYnTRf-ehFasZubq3BnNReiOkiGlRD0Ws-JzyAhjQ04lzxQ9QwMqhEwIodl537M0UUSQS3QV47pTU0HpAG0K30DyEYzD72C-8citIPpQ43GAqvLWQ93iSWz91rS9vIB2FRx-MhEc7ubp_o8OFV7CytsN4OdDbbbeRmxqhxfGrnwNeOl77AZdVGYT4fZUr9HXdFKMX5P528tsPJonljHeJobnxBlDCUmpywyVJVGZEFnJlStdJhkpqVSVzC2v8pwqphiXDrhVsjTdxK_Rw3Hvrgk_e4itXod9U3cnNct5ymUuVNpR9EjZJsTYQKV3Tfdmc9CU6D5U3Yeq-1D1KdTOc3_0eAD455UkTBDFfwGr1HH6</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Leng, Bo</creator><creator>Jin, Da</creator><creator>Hou, Xinchen</creator><creator>Tian, Cheng</creator><creator>Xiong, Lu</creator><creator>Yu, Zhuoping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3513-1708</orcidid><orcidid>https://orcid.org/0000-0002-1673-2658</orcidid><orcidid>https://orcid.org/0000-0002-6354-8001</orcidid><orcidid>https://orcid.org/0000-0003-4873-7071</orcidid><orcidid>https://orcid.org/0000-0002-8775-0052</orcidid></search><sort><creationdate>20221101</creationdate><title>Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision</title><author>Leng, Bo ; Jin, Da ; Hou, Xinchen ; Tian, Cheng ; Xiong, Lu ; Yu, Zhuoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-a370daa10041d6a18b096556b39dbd6820b189f87c3f771929238de3c98ba9293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Adhesion</topic><topic>Adhesives</topic><topic>Convergence</topic><topic>Decision making</topic><topic>Dynamical systems</topic><topic>Estimation</topic><topic>Excitation</topic><topic>Force</topic><topic>intelligent vehicle</topic><topic>Intelligent vehicles</topic><topic>Machine vision</topic><topic>Motion control</topic><topic>multisource information fusion</topic><topic>Nonlinear systems</topic><topic>Observability</topic><topic>Parameter identification</topic><topic>Roads</topic><topic>Self tuning</topic><topic>Tire force</topic><topic>Tire-road peak adhesion coefficient</topic><topic>Tires</topic><topic>Vehicle dynamics</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leng, Bo</creatorcontrib><creatorcontrib>Jin, Da</creatorcontrib><creatorcontrib>Hou, Xinchen</creatorcontrib><creatorcontrib>Tian, Cheng</creatorcontrib><creatorcontrib>Xiong, Lu</creatorcontrib><creatorcontrib>Yu, Zhuoping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leng, Bo</au><au>Jin, Da</au><au>Hou, Xinchen</au><au>Tian, Cheng</au><au>Xiong, Lu</au><au>Yu, Zhuoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>23</volume><issue>11</issue><spage>21740</spage><epage>21752</epage><pages>21740-21752</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The tire-road peak adhesion coefficient (TRPAC) describes the tire adhesion limit that a road can provide. The TRPAC is a key parameter for precise vehicle motion control and an important basis for decision-making and planning of intelligent vehicles. Considering the critical and difficult problems in the estimation of TRPAC, such as slow convergence and low accuracy, a TRPAC estimation method based on the fusion of vehicle dynamics and machine vision is proposed in this paper. Based on the observability theory of nonlinear systems, local weak observability of the dynamics-based estimator is analyzed to explain the limitation of a single dynamics-based estimator. The framework of dynamics-image-based fusion estimator is then proposed, including the fusion of data, model and decision levels. A dynamics-based fusion estimator is designed by considering the coupling relationship of longitudinal and lateral tire forces to adapt the conditions of complex excitations. Start-and-stop strategy for the dynamics-based fusion estimator is designed by setting excitation thresholds for different types of road surfaces, which are identified using vision information. Parameter self-tuning for the dynamics-based fusion estimator based on the image-based estimator is proposed to improve convergence speed and reduce oscillation. The results of the simulation and vehicle test show that the road estimation error of the proposed method is within 0.03 and the convergence time is within 0.5 s. Compared with other existing estimators, the fusion estimator achieved better accuracy, sensitivity and stability, particularly when complex excitations were present.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3183691</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3513-1708</orcidid><orcidid>https://orcid.org/0000-0002-1673-2658</orcidid><orcidid>https://orcid.org/0000-0002-6354-8001</orcidid><orcidid>https://orcid.org/0000-0003-4873-7071</orcidid><orcidid>https://orcid.org/0000-0002-8775-0052</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-11, Vol.23 (11), p.21740-21752
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2734387594
source IEEE Electronic Library Online
subjects Accuracy
Adhesion
Adhesives
Convergence
Decision making
Dynamical systems
Estimation
Excitation
Force
intelligent vehicle
Intelligent vehicles
Machine vision
Motion control
multisource information fusion
Nonlinear systems
Observability
Parameter identification
Roads
Self tuning
Tire force
Tire-road peak adhesion coefficient
Tires
Vehicle dynamics
Vision systems
title Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tire-Road%20Peak%20Adhesion%20Coefficient%20Estimation%20Method%20Based%20on%20Fusion%20of%20Vehicle%20Dynamics%20and%20Machine%20Vision&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Leng,%20Bo&rft.date=2022-11-01&rft.volume=23&rft.issue=11&rft.spage=21740&rft.epage=21752&rft.pages=21740-21752&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3183691&rft_dat=%3Cproquest_RIE%3E2734387594%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734387594&rft_id=info:pmid/&rft_ieee_id=9802509&rfr_iscdi=true