Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision
The tire-road peak adhesion coefficient (TRPAC) describes the tire adhesion limit that a road can provide. The TRPAC is a key parameter for precise vehicle motion control and an important basis for decision-making and planning of intelligent vehicles. Considering the critical and difficult problems...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-11, Vol.23 (11), p.21740-21752 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21752 |
---|---|
container_issue | 11 |
container_start_page | 21740 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Leng, Bo Jin, Da Hou, Xinchen Tian, Cheng Xiong, Lu Yu, Zhuoping |
description | The tire-road peak adhesion coefficient (TRPAC) describes the tire adhesion limit that a road can provide. The TRPAC is a key parameter for precise vehicle motion control and an important basis for decision-making and planning of intelligent vehicles. Considering the critical and difficult problems in the estimation of TRPAC, such as slow convergence and low accuracy, a TRPAC estimation method based on the fusion of vehicle dynamics and machine vision is proposed in this paper. Based on the observability theory of nonlinear systems, local weak observability of the dynamics-based estimator is analyzed to explain the limitation of a single dynamics-based estimator. The framework of dynamics-image-based fusion estimator is then proposed, including the fusion of data, model and decision levels. A dynamics-based fusion estimator is designed by considering the coupling relationship of longitudinal and lateral tire forces to adapt the conditions of complex excitations. Start-and-stop strategy for the dynamics-based fusion estimator is designed by setting excitation thresholds for different types of road surfaces, which are identified using vision information. Parameter self-tuning for the dynamics-based fusion estimator based on the image-based estimator is proposed to improve convergence speed and reduce oscillation. The results of the simulation and vehicle test show that the road estimation error of the proposed method is within 0.03 and the convergence time is within 0.5 s. Compared with other existing estimators, the fusion estimator achieved better accuracy, sensitivity and stability, particularly when complex excitations were present. |
doi_str_mv | 10.1109/TITS.2022.3183691 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2734387594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9802509</ieee_id><sourcerecordid>2734387594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-a370daa10041d6a18b096556b39dbd6820b189f87c3f771929238de3c98ba9293</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEuXxAYiNJdYpfsSJvSylhUqtQBC6tRx7orq0cYnTRf-ehFasZubq3BnNReiOkiGlRD0Ws-JzyAhjQ04lzxQ9QwMqhEwIodl537M0UUSQS3QV47pTU0HpAG0K30DyEYzD72C-8citIPpQ43GAqvLWQ93iSWz91rS9vIB2FRx-MhEc7ubp_o8OFV7CytsN4OdDbbbeRmxqhxfGrnwNeOl77AZdVGYT4fZUr9HXdFKMX5P528tsPJonljHeJobnxBlDCUmpywyVJVGZEFnJlStdJhkpqVSVzC2v8pwqphiXDrhVsjTdxK_Rw3Hvrgk_e4itXod9U3cnNct5ymUuVNpR9EjZJsTYQKV3Tfdmc9CU6D5U3Yeq-1D1KdTOc3_0eAD455UkTBDFfwGr1HH6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734387594</pqid></control><display><type>article</type><title>Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision</title><source>IEEE Electronic Library Online</source><creator>Leng, Bo ; Jin, Da ; Hou, Xinchen ; Tian, Cheng ; Xiong, Lu ; Yu, Zhuoping</creator><creatorcontrib>Leng, Bo ; Jin, Da ; Hou, Xinchen ; Tian, Cheng ; Xiong, Lu ; Yu, Zhuoping</creatorcontrib><description>The tire-road peak adhesion coefficient (TRPAC) describes the tire adhesion limit that a road can provide. The TRPAC is a key parameter for precise vehicle motion control and an important basis for decision-making and planning of intelligent vehicles. Considering the critical and difficult problems in the estimation of TRPAC, such as slow convergence and low accuracy, a TRPAC estimation method based on the fusion of vehicle dynamics and machine vision is proposed in this paper. Based on the observability theory of nonlinear systems, local weak observability of the dynamics-based estimator is analyzed to explain the limitation of a single dynamics-based estimator. The framework of dynamics-image-based fusion estimator is then proposed, including the fusion of data, model and decision levels. A dynamics-based fusion estimator is designed by considering the coupling relationship of longitudinal and lateral tire forces to adapt the conditions of complex excitations. Start-and-stop strategy for the dynamics-based fusion estimator is designed by setting excitation thresholds for different types of road surfaces, which are identified using vision information. Parameter self-tuning for the dynamics-based fusion estimator based on the image-based estimator is proposed to improve convergence speed and reduce oscillation. The results of the simulation and vehicle test show that the road estimation error of the proposed method is within 0.03 and the convergence time is within 0.5 s. Compared with other existing estimators, the fusion estimator achieved better accuracy, sensitivity and stability, particularly when complex excitations were present.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2022.3183691</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adhesion ; Adhesives ; Convergence ; Decision making ; Dynamical systems ; Estimation ; Excitation ; Force ; intelligent vehicle ; Intelligent vehicles ; Machine vision ; Motion control ; multisource information fusion ; Nonlinear systems ; Observability ; Parameter identification ; Roads ; Self tuning ; Tire force ; Tire-road peak adhesion coefficient ; Tires ; Vehicle dynamics ; Vision systems</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-11, Vol.23 (11), p.21740-21752</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c223t-a370daa10041d6a18b096556b39dbd6820b189f87c3f771929238de3c98ba9293</citedby><cites>FETCH-LOGICAL-c223t-a370daa10041d6a18b096556b39dbd6820b189f87c3f771929238de3c98ba9293</cites><orcidid>0000-0003-3513-1708 ; 0000-0002-1673-2658 ; 0000-0002-6354-8001 ; 0000-0003-4873-7071 ; 0000-0002-8775-0052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9802509$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27933,27934,54767</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9802509$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leng, Bo</creatorcontrib><creatorcontrib>Jin, Da</creatorcontrib><creatorcontrib>Hou, Xinchen</creatorcontrib><creatorcontrib>Tian, Cheng</creatorcontrib><creatorcontrib>Xiong, Lu</creatorcontrib><creatorcontrib>Yu, Zhuoping</creatorcontrib><title>Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>The tire-road peak adhesion coefficient (TRPAC) describes the tire adhesion limit that a road can provide. The TRPAC is a key parameter for precise vehicle motion control and an important basis for decision-making and planning of intelligent vehicles. Considering the critical and difficult problems in the estimation of TRPAC, such as slow convergence and low accuracy, a TRPAC estimation method based on the fusion of vehicle dynamics and machine vision is proposed in this paper. Based on the observability theory of nonlinear systems, local weak observability of the dynamics-based estimator is analyzed to explain the limitation of a single dynamics-based estimator. The framework of dynamics-image-based fusion estimator is then proposed, including the fusion of data, model and decision levels. A dynamics-based fusion estimator is designed by considering the coupling relationship of longitudinal and lateral tire forces to adapt the conditions of complex excitations. Start-and-stop strategy for the dynamics-based fusion estimator is designed by setting excitation thresholds for different types of road surfaces, which are identified using vision information. Parameter self-tuning for the dynamics-based fusion estimator based on the image-based estimator is proposed to improve convergence speed and reduce oscillation. The results of the simulation and vehicle test show that the road estimation error of the proposed method is within 0.03 and the convergence time is within 0.5 s. Compared with other existing estimators, the fusion estimator achieved better accuracy, sensitivity and stability, particularly when complex excitations were present.</description><subject>Accuracy</subject><subject>Adhesion</subject><subject>Adhesives</subject><subject>Convergence</subject><subject>Decision making</subject><subject>Dynamical systems</subject><subject>Estimation</subject><subject>Excitation</subject><subject>Force</subject><subject>intelligent vehicle</subject><subject>Intelligent vehicles</subject><subject>Machine vision</subject><subject>Motion control</subject><subject>multisource information fusion</subject><subject>Nonlinear systems</subject><subject>Observability</subject><subject>Parameter identification</subject><subject>Roads</subject><subject>Self tuning</subject><subject>Tire force</subject><subject>Tire-road peak adhesion coefficient</subject><subject>Tires</subject><subject>Vehicle dynamics</subject><subject>Vision systems</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEuXxAYiNJdYpfsSJvSylhUqtQBC6tRx7orq0cYnTRf-ehFasZubq3BnNReiOkiGlRD0Ws-JzyAhjQ04lzxQ9QwMqhEwIodl537M0UUSQS3QV47pTU0HpAG0K30DyEYzD72C-8citIPpQ43GAqvLWQ93iSWz91rS9vIB2FRx-MhEc7ubp_o8OFV7CytsN4OdDbbbeRmxqhxfGrnwNeOl77AZdVGYT4fZUr9HXdFKMX5P528tsPJonljHeJobnxBlDCUmpywyVJVGZEFnJlStdJhkpqVSVzC2v8pwqphiXDrhVsjTdxK_Rw3Hvrgk_e4itXod9U3cnNct5ymUuVNpR9EjZJsTYQKV3Tfdmc9CU6D5U3Yeq-1D1KdTOc3_0eAD455UkTBDFfwGr1HH6</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Leng, Bo</creator><creator>Jin, Da</creator><creator>Hou, Xinchen</creator><creator>Tian, Cheng</creator><creator>Xiong, Lu</creator><creator>Yu, Zhuoping</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3513-1708</orcidid><orcidid>https://orcid.org/0000-0002-1673-2658</orcidid><orcidid>https://orcid.org/0000-0002-6354-8001</orcidid><orcidid>https://orcid.org/0000-0003-4873-7071</orcidid><orcidid>https://orcid.org/0000-0002-8775-0052</orcidid></search><sort><creationdate>20221101</creationdate><title>Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision</title><author>Leng, Bo ; Jin, Da ; Hou, Xinchen ; Tian, Cheng ; Xiong, Lu ; Yu, Zhuoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-a370daa10041d6a18b096556b39dbd6820b189f87c3f771929238de3c98ba9293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Adhesion</topic><topic>Adhesives</topic><topic>Convergence</topic><topic>Decision making</topic><topic>Dynamical systems</topic><topic>Estimation</topic><topic>Excitation</topic><topic>Force</topic><topic>intelligent vehicle</topic><topic>Intelligent vehicles</topic><topic>Machine vision</topic><topic>Motion control</topic><topic>multisource information fusion</topic><topic>Nonlinear systems</topic><topic>Observability</topic><topic>Parameter identification</topic><topic>Roads</topic><topic>Self tuning</topic><topic>Tire force</topic><topic>Tire-road peak adhesion coefficient</topic><topic>Tires</topic><topic>Vehicle dynamics</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leng, Bo</creatorcontrib><creatorcontrib>Jin, Da</creatorcontrib><creatorcontrib>Hou, Xinchen</creatorcontrib><creatorcontrib>Tian, Cheng</creatorcontrib><creatorcontrib>Xiong, Lu</creatorcontrib><creatorcontrib>Yu, Zhuoping</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leng, Bo</au><au>Jin, Da</au><au>Hou, Xinchen</au><au>Tian, Cheng</au><au>Xiong, Lu</au><au>Yu, Zhuoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>23</volume><issue>11</issue><spage>21740</spage><epage>21752</epage><pages>21740-21752</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>The tire-road peak adhesion coefficient (TRPAC) describes the tire adhesion limit that a road can provide. The TRPAC is a key parameter for precise vehicle motion control and an important basis for decision-making and planning of intelligent vehicles. Considering the critical and difficult problems in the estimation of TRPAC, such as slow convergence and low accuracy, a TRPAC estimation method based on the fusion of vehicle dynamics and machine vision is proposed in this paper. Based on the observability theory of nonlinear systems, local weak observability of the dynamics-based estimator is analyzed to explain the limitation of a single dynamics-based estimator. The framework of dynamics-image-based fusion estimator is then proposed, including the fusion of data, model and decision levels. A dynamics-based fusion estimator is designed by considering the coupling relationship of longitudinal and lateral tire forces to adapt the conditions of complex excitations. Start-and-stop strategy for the dynamics-based fusion estimator is designed by setting excitation thresholds for different types of road surfaces, which are identified using vision information. Parameter self-tuning for the dynamics-based fusion estimator based on the image-based estimator is proposed to improve convergence speed and reduce oscillation. The results of the simulation and vehicle test show that the road estimation error of the proposed method is within 0.03 and the convergence time is within 0.5 s. Compared with other existing estimators, the fusion estimator achieved better accuracy, sensitivity and stability, particularly when complex excitations were present.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2022.3183691</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3513-1708</orcidid><orcidid>https://orcid.org/0000-0002-1673-2658</orcidid><orcidid>https://orcid.org/0000-0002-6354-8001</orcidid><orcidid>https://orcid.org/0000-0003-4873-7071</orcidid><orcidid>https://orcid.org/0000-0002-8775-0052</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-11, Vol.23 (11), p.21740-21752 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2734387594 |
source | IEEE Electronic Library Online |
subjects | Accuracy Adhesion Adhesives Convergence Decision making Dynamical systems Estimation Excitation Force intelligent vehicle Intelligent vehicles Machine vision Motion control multisource information fusion Nonlinear systems Observability Parameter identification Roads Self tuning Tire force Tire-road peak adhesion coefficient Tires Vehicle dynamics Vision systems |
title | Tire-Road Peak Adhesion Coefficient Estimation Method Based on Fusion of Vehicle Dynamics and Machine Vision |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T13%3A59%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tire-Road%20Peak%20Adhesion%20Coefficient%20Estimation%20Method%20Based%20on%20Fusion%20of%20Vehicle%20Dynamics%20and%20Machine%20Vision&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Leng,%20Bo&rft.date=2022-11-01&rft.volume=23&rft.issue=11&rft.spage=21740&rft.epage=21752&rft.pages=21740-21752&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2022.3183691&rft_dat=%3Cproquest_RIE%3E2734387594%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734387594&rft_id=info:pmid/&rft_ieee_id=9802509&rfr_iscdi=true |