Multi-Moments in Time: Learning and Interpreting Models for Multi-Action Video Understanding
Videos capture events that typically contain multiple sequential, and simultaneous, actions even in the span of only a few seconds. However, most large-scale datasets built to train models for action recognition in video only provide a single label per video. Consequently, models can be incorrectly...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2022-12, Vol.44 (12), p.9434-9445 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9445 |
---|---|
container_issue | 12 |
container_start_page | 9434 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 44 |
creator | Monfort, Mathew Pan, Bowen Ramakrishnan, Kandan Andonian, Alex McNamara, Barry A. Lascelles, Alex Fan, Quanfu Gutfreund, Dan Feris, Rogerio Schmidt Oliva, Aude |
description | Videos capture events that typically contain multiple sequential, and simultaneous, actions even in the span of only a few seconds. However, most large-scale datasets built to train models for action recognition in video only provide a single label per video. Consequently, models can be incorrectly penalized for classifying actions that exist in the videos but are not explicitly labeled and do not learn the full spectrum of information present in each video in training. Towards this goal, we present the Multi-Moments in Time dataset (M-MiT) which includes over two million action labels for over one million three second videos. This multi-label dataset introduces novel challenges on how to train and analyze models for multi-action detection. Here, we present baseline results for multi-action recognition using loss functions adapted for long tail multi-label learning, provide improved methods for visualizing and interpreting models trained for multi-label action detection and show the strength of transferring models trained on M-MiT to smaller datasets. |
doi_str_mv | 10.1109/TPAMI.2021.3126682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2734385590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9609554</ieee_id><sourcerecordid>2734385590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-deefe5ba7c38d260229e5764626795e07a9017437846eea69270706713d8c2463</originalsourceid><addsrcrecordid>eNpdkE1PGzEQhq2qCELKHygXS71w2WCP11-9RYiPSIngkHBCsra7s5XRxg725sC_r0NQD5xGmnmemdFLyE_OZpwze71-mq8WM2DAZ4KDUga-kQlwxSoLFr6TCeMKKmPAnJHznF8Z47Vk4pSciVpLEEZNyMtqP4y-WsUthjFTH-jab_E3XWKTgg9_aRM6uggjpl3C8dBYxQ6HTPuY6NGdt6OPgT77DiPdhA5THotV2B_kpG-GjBefdUo2d7frm4dq-Xi_uJkvq1aAGasOsUf5p9GtMB0oBmBRalUrUNpKZLqxjOtaaFMrxEZZ0EwzpbnoTAu1ElNyddy7S_Ftj3l0W59bHIYmYNxnB9KqssGKuqC_vqCvcZ9C-c6BLnMjpWWFgiPVpphzwt7tkt826d1x5g7Zu4_s3SF795l9kS6PkkfE_0K5bKWsxT_Nf3xW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734385590</pqid></control><display><type>article</type><title>Multi-Moments in Time: Learning and Interpreting Models for Multi-Action Video Understanding</title><source>IEEE Electronic Library (IEL)</source><creator>Monfort, Mathew ; Pan, Bowen ; Ramakrishnan, Kandan ; Andonian, Alex ; McNamara, Barry A. ; Lascelles, Alex ; Fan, Quanfu ; Gutfreund, Dan ; Feris, Rogerio Schmidt ; Oliva, Aude</creator><creatorcontrib>Monfort, Mathew ; Pan, Bowen ; Ramakrishnan, Kandan ; Andonian, Alex ; McNamara, Barry A. ; Lascelles, Alex ; Fan, Quanfu ; Gutfreund, Dan ; Feris, Rogerio Schmidt ; Oliva, Aude</creatorcontrib><description>Videos capture events that typically contain multiple sequential, and simultaneous, actions even in the span of only a few seconds. However, most large-scale datasets built to train models for action recognition in video only provide a single label per video. Consequently, models can be incorrectly penalized for classifying actions that exist in the videos but are not explicitly labeled and do not learn the full spectrum of information present in each video in training. Towards this goal, we present the Multi-Moments in Time dataset (M-MiT) which includes over two million action labels for over one million three second videos. This multi-label dataset introduces novel challenges on how to train and analyze models for multi-action detection. Here, we present baseline results for multi-action recognition using loss functions adapted for long tail multi-label learning, provide improved methods for visualizing and interpreting models trained for multi-label action detection and show the strength of transferring models trained on M-MiT to smaller datasets.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 2160-9292</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2021.3126682</identifier><identifier>PMID: 34752386</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity recognition ; Analytical models ; Annotations ; benchmarking ; Computer vision ; Convolutional neural networks ; Datasets ; Learning ; machine learning ; methods of data collection ; modeling from video ; multi-modal recognition ; neural nets ; Semantics ; Three-dimensional displays ; Training ; Video ; vision and scene understanding ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-12, Vol.44 (12), p.9434-9445</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-deefe5ba7c38d260229e5764626795e07a9017437846eea69270706713d8c2463</citedby><cites>FETCH-LOGICAL-c328t-deefe5ba7c38d260229e5764626795e07a9017437846eea69270706713d8c2463</cites><orcidid>0000-0001-6373-5520 ; 0000-0001-5101-4443 ; 0000-0001-6399-0679</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9609554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9609554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Monfort, Mathew</creatorcontrib><creatorcontrib>Pan, Bowen</creatorcontrib><creatorcontrib>Ramakrishnan, Kandan</creatorcontrib><creatorcontrib>Andonian, Alex</creatorcontrib><creatorcontrib>McNamara, Barry A.</creatorcontrib><creatorcontrib>Lascelles, Alex</creatorcontrib><creatorcontrib>Fan, Quanfu</creatorcontrib><creatorcontrib>Gutfreund, Dan</creatorcontrib><creatorcontrib>Feris, Rogerio Schmidt</creatorcontrib><creatorcontrib>Oliva, Aude</creatorcontrib><title>Multi-Moments in Time: Learning and Interpreting Models for Multi-Action Video Understanding</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Videos capture events that typically contain multiple sequential, and simultaneous, actions even in the span of only a few seconds. However, most large-scale datasets built to train models for action recognition in video only provide a single label per video. Consequently, models can be incorrectly penalized for classifying actions that exist in the videos but are not explicitly labeled and do not learn the full spectrum of information present in each video in training. Towards this goal, we present the Multi-Moments in Time dataset (M-MiT) which includes over two million action labels for over one million three second videos. This multi-label dataset introduces novel challenges on how to train and analyze models for multi-action detection. Here, we present baseline results for multi-action recognition using loss functions adapted for long tail multi-label learning, provide improved methods for visualizing and interpreting models trained for multi-label action detection and show the strength of transferring models trained on M-MiT to smaller datasets.</description><subject>Activity recognition</subject><subject>Analytical models</subject><subject>Annotations</subject><subject>benchmarking</subject><subject>Computer vision</subject><subject>Convolutional neural networks</subject><subject>Datasets</subject><subject>Learning</subject><subject>machine learning</subject><subject>methods of data collection</subject><subject>modeling from video</subject><subject>multi-modal recognition</subject><subject>neural nets</subject><subject>Semantics</subject><subject>Three-dimensional displays</subject><subject>Training</subject><subject>Video</subject><subject>vision and scene understanding</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>2160-9292</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PGzEQhq2qCELKHygXS71w2WCP11-9RYiPSIngkHBCsra7s5XRxg725sC_r0NQD5xGmnmemdFLyE_OZpwze71-mq8WM2DAZ4KDUga-kQlwxSoLFr6TCeMKKmPAnJHznF8Z47Vk4pSciVpLEEZNyMtqP4y-WsUthjFTH-jab_E3XWKTgg9_aRM6uggjpl3C8dBYxQ6HTPuY6NGdt6OPgT77DiPdhA5THotV2B_kpG-GjBefdUo2d7frm4dq-Xi_uJkvq1aAGasOsUf5p9GtMB0oBmBRalUrUNpKZLqxjOtaaFMrxEZZ0EwzpbnoTAu1ElNyddy7S_Ftj3l0W59bHIYmYNxnB9KqssGKuqC_vqCvcZ9C-c6BLnMjpWWFgiPVpphzwt7tkt826d1x5g7Zu4_s3SF795l9kS6PkkfE_0K5bKWsxT_Nf3xW</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Monfort, Mathew</creator><creator>Pan, Bowen</creator><creator>Ramakrishnan, Kandan</creator><creator>Andonian, Alex</creator><creator>McNamara, Barry A.</creator><creator>Lascelles, Alex</creator><creator>Fan, Quanfu</creator><creator>Gutfreund, Dan</creator><creator>Feris, Rogerio Schmidt</creator><creator>Oliva, Aude</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6373-5520</orcidid><orcidid>https://orcid.org/0000-0001-5101-4443</orcidid><orcidid>https://orcid.org/0000-0001-6399-0679</orcidid></search><sort><creationdate>20221201</creationdate><title>Multi-Moments in Time: Learning and Interpreting Models for Multi-Action Video Understanding</title><author>Monfort, Mathew ; Pan, Bowen ; Ramakrishnan, Kandan ; Andonian, Alex ; McNamara, Barry A. ; Lascelles, Alex ; Fan, Quanfu ; Gutfreund, Dan ; Feris, Rogerio Schmidt ; Oliva, Aude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-deefe5ba7c38d260229e5764626795e07a9017437846eea69270706713d8c2463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activity recognition</topic><topic>Analytical models</topic><topic>Annotations</topic><topic>benchmarking</topic><topic>Computer vision</topic><topic>Convolutional neural networks</topic><topic>Datasets</topic><topic>Learning</topic><topic>machine learning</topic><topic>methods of data collection</topic><topic>modeling from video</topic><topic>multi-modal recognition</topic><topic>neural nets</topic><topic>Semantics</topic><topic>Three-dimensional displays</topic><topic>Training</topic><topic>Video</topic><topic>vision and scene understanding</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monfort, Mathew</creatorcontrib><creatorcontrib>Pan, Bowen</creatorcontrib><creatorcontrib>Ramakrishnan, Kandan</creatorcontrib><creatorcontrib>Andonian, Alex</creatorcontrib><creatorcontrib>McNamara, Barry A.</creatorcontrib><creatorcontrib>Lascelles, Alex</creatorcontrib><creatorcontrib>Fan, Quanfu</creatorcontrib><creatorcontrib>Gutfreund, Dan</creatorcontrib><creatorcontrib>Feris, Rogerio Schmidt</creatorcontrib><creatorcontrib>Oliva, Aude</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Monfort, Mathew</au><au>Pan, Bowen</au><au>Ramakrishnan, Kandan</au><au>Andonian, Alex</au><au>McNamara, Barry A.</au><au>Lascelles, Alex</au><au>Fan, Quanfu</au><au>Gutfreund, Dan</au><au>Feris, Rogerio Schmidt</au><au>Oliva, Aude</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Moments in Time: Learning and Interpreting Models for Multi-Action Video Understanding</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>44</volume><issue>12</issue><spage>9434</spage><epage>9445</epage><pages>9434-9445</pages><issn>0162-8828</issn><eissn>2160-9292</eissn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Videos capture events that typically contain multiple sequential, and simultaneous, actions even in the span of only a few seconds. However, most large-scale datasets built to train models for action recognition in video only provide a single label per video. Consequently, models can be incorrectly penalized for classifying actions that exist in the videos but are not explicitly labeled and do not learn the full spectrum of information present in each video in training. Towards this goal, we present the Multi-Moments in Time dataset (M-MiT) which includes over two million action labels for over one million three second videos. This multi-label dataset introduces novel challenges on how to train and analyze models for multi-action detection. Here, we present baseline results for multi-action recognition using loss functions adapted for long tail multi-label learning, provide improved methods for visualizing and interpreting models trained for multi-label action detection and show the strength of transferring models trained on M-MiT to smaller datasets.</abstract><cop>New York</cop><pub>IEEE</pub><pmid>34752386</pmid><doi>10.1109/TPAMI.2021.3126682</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6373-5520</orcidid><orcidid>https://orcid.org/0000-0001-5101-4443</orcidid><orcidid>https://orcid.org/0000-0001-6399-0679</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2022-12, Vol.44 (12), p.9434-9445 |
issn | 0162-8828 2160-9292 1939-3539 |
language | eng |
recordid | cdi_proquest_journals_2734385590 |
source | IEEE Electronic Library (IEL) |
subjects | Activity recognition Analytical models Annotations benchmarking Computer vision Convolutional neural networks Datasets Learning machine learning methods of data collection modeling from video multi-modal recognition neural nets Semantics Three-dimensional displays Training Video vision and scene understanding Visualization |
title | Multi-Moments in Time: Learning and Interpreting Models for Multi-Action Video Understanding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Moments%20in%20Time:%20Learning%20and%20Interpreting%20Models%20for%20Multi-Action%20Video%20Understanding&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Monfort,%20Mathew&rft.date=2022-12-01&rft.volume=44&rft.issue=12&rft.spage=9434&rft.epage=9445&rft.pages=9434-9445&rft.issn=0162-8828&rft.eissn=2160-9292&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2021.3126682&rft_dat=%3Cproquest_RIE%3E2734385590%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734385590&rft_id=info:pmid/34752386&rft_ieee_id=9609554&rfr_iscdi=true |