The way to AI-controlled synthesis: how far do we need to go?
Chemical synthesis always plays an irreplaceable role in chemical, materials, and pharmacological fields. Meanwhile, artificial intelligence (AI) is causing a rapid technological revolution in many fields by replacing manual chemical synthesis and has exhibited a much more economical and time-effici...
Gespeichert in:
Veröffentlicht in: | Chemical science (Cambridge) 2022-11, Vol.13 (43), p.1264-12615 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12615 |
---|---|
container_issue | 43 |
container_start_page | 1264 |
container_title | Chemical science (Cambridge) |
container_volume | 13 |
creator | Wang, Wei Liu, Yingwei Wang, Zheng Hao, Gefei Song, Baoan |
description | Chemical synthesis always plays an irreplaceable role in chemical, materials, and pharmacological fields. Meanwhile, artificial intelligence (AI) is causing a rapid technological revolution in many fields by replacing manual chemical synthesis and has exhibited a much more economical and time-efficient manner. However, the rate-determining step of AI-controlled synthesis systems is rarely mentioned, which makes it difficult to apply them in general laboratories. Here, the history of developing AI-aided synthesis has been overviewed and summarized. We propose that the hardware of AI-controlled synthesis systems should be more adaptive to execute reactions with different phase reagents and under different reaction conditions, and the software of AI-controlled synthesis systems should have richer kinds of reaction prediction modules. An updated system will better address more different kinds of syntheses. Our viewpoint could help scientists advance the revolution that combines AI and synthesis to achieve more progress in complicated systems.
It is still a long march for AI-controlled synthesis to enter into general laboratories. Flaws in the architecture of AI-controlled synthesis systems must be overcome. |
doi_str_mv | 10.1039/d2sc04419f |
format | Article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2734082615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2734082615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-104ff30ad917511fee7f9ed99bd22c68d6a56251d2dd547eb9f4df008ff45b703</originalsourceid><addsrcrecordid>eNpdkUtLAzEUhYMoVqob90rAjQijec9EUJFqtVBwYV2HdJK0I9OJJlNL_73Ran3czb1wPg7ncgDYx-gUIyrPDIklYgxLtwF2CGI4E5zKzfVNUAfsxfiM0lCKOcm3QYcKjiWiYgdcjKYWLvQSth5eD7LSN23wdW0NjMumndpYxXM49QvodIDGw4WFjU1qwif-ahdsOV1Hu_e1u-Cpfzvq3WfDh7tB73qYlYwUbYYRc44ibSTOOcbO2txJa6QcG0JKURihuSAcG2IMZ7kdS8eMQ6hwjvFxjmgXXK58X-bjmTWlTSl1rV5CNdNhqbyu1F-lqaZq4t-UFIzTnCaD4y-D4F_nNrZqVsXS1rVurJ9HRXLOCi5YjhN69A999vPQpPcSRRkqiMA8UScrqgw-xmDdOgxG6qMYdUMee5_F9BN8-Dv-Gv2uIQEHKyDEcq3-NEvfAWLjkOc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734082615</pqid></control><display><type>article</type><title>The way to AI-controlled synthesis: how far do we need to go?</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Wang, Wei ; Liu, Yingwei ; Wang, Zheng ; Hao, Gefei ; Song, Baoan</creator><creatorcontrib>Wang, Wei ; Liu, Yingwei ; Wang, Zheng ; Hao, Gefei ; Song, Baoan</creatorcontrib><description>Chemical synthesis always plays an irreplaceable role in chemical, materials, and pharmacological fields. Meanwhile, artificial intelligence (AI) is causing a rapid technological revolution in many fields by replacing manual chemical synthesis and has exhibited a much more economical and time-efficient manner. However, the rate-determining step of AI-controlled synthesis systems is rarely mentioned, which makes it difficult to apply them in general laboratories. Here, the history of developing AI-aided synthesis has been overviewed and summarized. We propose that the hardware of AI-controlled synthesis systems should be more adaptive to execute reactions with different phase reagents and under different reaction conditions, and the software of AI-controlled synthesis systems should have richer kinds of reaction prediction modules. An updated system will better address more different kinds of syntheses. Our viewpoint could help scientists advance the revolution that combines AI and synthesis to achieve more progress in complicated systems.
It is still a long march for AI-controlled synthesis to enter into general laboratories. Flaws in the architecture of AI-controlled synthesis systems must be overcome.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d2sc04419f</identifier><identifier>PMID: 36519036</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Artificial intelligence ; Chemical synthesis ; Chemistry ; Reagents</subject><ispartof>Chemical science (Cambridge), 2022-11, Vol.13 (43), p.1264-12615</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-104ff30ad917511fee7f9ed99bd22c68d6a56251d2dd547eb9f4df008ff45b703</citedby><cites>FETCH-LOGICAL-c428t-104ff30ad917511fee7f9ed99bd22c68d6a56251d2dd547eb9f4df008ff45b703</cites><orcidid>0000-0002-4237-6167 ; 0000-0003-4090-8411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645373/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645373/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36519036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Liu, Yingwei</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Hao, Gefei</creatorcontrib><creatorcontrib>Song, Baoan</creatorcontrib><title>The way to AI-controlled synthesis: how far do we need to go?</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Chemical synthesis always plays an irreplaceable role in chemical, materials, and pharmacological fields. Meanwhile, artificial intelligence (AI) is causing a rapid technological revolution in many fields by replacing manual chemical synthesis and has exhibited a much more economical and time-efficient manner. However, the rate-determining step of AI-controlled synthesis systems is rarely mentioned, which makes it difficult to apply them in general laboratories. Here, the history of developing AI-aided synthesis has been overviewed and summarized. We propose that the hardware of AI-controlled synthesis systems should be more adaptive to execute reactions with different phase reagents and under different reaction conditions, and the software of AI-controlled synthesis systems should have richer kinds of reaction prediction modules. An updated system will better address more different kinds of syntheses. Our viewpoint could help scientists advance the revolution that combines AI and synthesis to achieve more progress in complicated systems.
It is still a long march for AI-controlled synthesis to enter into general laboratories. Flaws in the architecture of AI-controlled synthesis systems must be overcome.</description><subject>Artificial intelligence</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Reagents</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLAzEUhYMoVqob90rAjQijec9EUJFqtVBwYV2HdJK0I9OJJlNL_73Ran3czb1wPg7ncgDYx-gUIyrPDIklYgxLtwF2CGI4E5zKzfVNUAfsxfiM0lCKOcm3QYcKjiWiYgdcjKYWLvQSth5eD7LSN23wdW0NjMumndpYxXM49QvodIDGw4WFjU1qwif-ahdsOV1Hu_e1u-Cpfzvq3WfDh7tB73qYlYwUbYYRc44ibSTOOcbO2txJa6QcG0JKURihuSAcG2IMZ7kdS8eMQ6hwjvFxjmgXXK58X-bjmTWlTSl1rV5CNdNhqbyu1F-lqaZq4t-UFIzTnCaD4y-D4F_nNrZqVsXS1rVurJ9HRXLOCi5YjhN69A999vPQpPcSRRkqiMA8UScrqgw-xmDdOgxG6qMYdUMee5_F9BN8-Dv-Gv2uIQEHKyDEcq3-NEvfAWLjkOc</recordid><startdate>20221109</startdate><enddate>20221109</enddate><creator>Wang, Wei</creator><creator>Liu, Yingwei</creator><creator>Wang, Zheng</creator><creator>Hao, Gefei</creator><creator>Song, Baoan</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4237-6167</orcidid><orcidid>https://orcid.org/0000-0003-4090-8411</orcidid></search><sort><creationdate>20221109</creationdate><title>The way to AI-controlled synthesis: how far do we need to go?</title><author>Wang, Wei ; Liu, Yingwei ; Wang, Zheng ; Hao, Gefei ; Song, Baoan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-104ff30ad917511fee7f9ed99bd22c68d6a56251d2dd547eb9f4df008ff45b703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial intelligence</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Reagents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Liu, Yingwei</creatorcontrib><creatorcontrib>Wang, Zheng</creatorcontrib><creatorcontrib>Hao, Gefei</creatorcontrib><creatorcontrib>Song, Baoan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wei</au><au>Liu, Yingwei</au><au>Wang, Zheng</au><au>Hao, Gefei</au><au>Song, Baoan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The way to AI-controlled synthesis: how far do we need to go?</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2022-11-09</date><risdate>2022</risdate><volume>13</volume><issue>43</issue><spage>1264</spage><epage>12615</epage><pages>1264-12615</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Chemical synthesis always plays an irreplaceable role in chemical, materials, and pharmacological fields. Meanwhile, artificial intelligence (AI) is causing a rapid technological revolution in many fields by replacing manual chemical synthesis and has exhibited a much more economical and time-efficient manner. However, the rate-determining step of AI-controlled synthesis systems is rarely mentioned, which makes it difficult to apply them in general laboratories. Here, the history of developing AI-aided synthesis has been overviewed and summarized. We propose that the hardware of AI-controlled synthesis systems should be more adaptive to execute reactions with different phase reagents and under different reaction conditions, and the software of AI-controlled synthesis systems should have richer kinds of reaction prediction modules. An updated system will better address more different kinds of syntheses. Our viewpoint could help scientists advance the revolution that combines AI and synthesis to achieve more progress in complicated systems.
It is still a long march for AI-controlled synthesis to enter into general laboratories. Flaws in the architecture of AI-controlled synthesis systems must be overcome.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36519036</pmid><doi>10.1039/d2sc04419f</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4237-6167</orcidid><orcidid>https://orcid.org/0000-0003-4090-8411</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2022-11, Vol.13 (43), p.1264-12615 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_proquest_journals_2734082615 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access |
subjects | Artificial intelligence Chemical synthesis Chemistry Reagents |
title | The way to AI-controlled synthesis: how far do we need to go? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A13%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20way%20to%20AI-controlled%20synthesis:%20how%20far%20do%20we%20need%20to%20go?&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Wang,%20Wei&rft.date=2022-11-09&rft.volume=13&rft.issue=43&rft.spage=1264&rft.epage=12615&rft.pages=1264-12615&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d2sc04419f&rft_dat=%3Cproquest_rsc_p%3E2734082615%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734082615&rft_id=info:pmid/36519036&rfr_iscdi=true |