Extension of the unsymmetric 8‐node hexahedral solid element US‐ATFH8 to 3D hyper‐elastic finite deformation analysis

This work extends the recent US‐ATFH8 element to 3D hyper‐elastic finite deformation analysis. Using two sets of shape functions, the new 3D element comprises of 8 nodes and 24 DOFs. The first set of shape functions represent the test functions that come from the conventional isoparametric interpola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2022-12, Vol.123 (23), p.5749-5778
Hauptverfasser: Ma, Ru‐Xia, Cen, Song, Shang, Yan, Li, Chen‐Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5778
container_issue 23
container_start_page 5749
container_title International journal for numerical methods in engineering
container_volume 123
creator Ma, Ru‐Xia
Cen, Song
Shang, Yan
Li, Chen‐Feng
description This work extends the recent US‐ATFH8 element to 3D hyper‐elastic finite deformation analysis. Using two sets of shape functions, the new 3D element comprises of 8 nodes and 24 DOFs. The first set of shape functions represent the test functions that come from the conventional isoparametric interpolation, and the second set, representing the trial functions, are constructed from the homogenous solutions for linear elasticity governing equations, termed analytical trial functions (ATFs). This study considers finite deformation for hyper‐elastic materials, but it is assumed that the analytical solutions associated with hyper‐elastic materials can be updated to hold approximately in each incremental step. Moreover, the deformation information required for stress computation is updated by using the incremental deformation gradient, which is constructed from the updated ATFs. Numerical examples show that without additional pressure DOF, the element US‐ATFH8 still behaves well in nearly incompressible hyper‐elastic 3D problems with finite deformation, even when the meshes are extremely distorted.
doi_str_mv 10.1002/nme.7086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2733954095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733954095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2566-156fe84ce8a9d7165eb1133a13876a5e5a68a56554b7d03020d028f8299b788a3</originalsourceid><addsrcrecordid>eNp1kMFOAjEQhhujiYgmPkITL14W2y3dbY8EQUxQD8K5KbuzoWR3i22JbLz4CD6jT2IRr54mmfnyz8yH0DUlA0pIetc2MMiJyE5QjxKZJyQl-SnqxZFMuBT0HF14vyGEUk5YD31M9gFab2yLbYXDGvCu9V3TQHCmwOL786u1JeA17PUaSqdr7G1tSgw1NNAGvHyNyGgxnQkcLGb3eN1twcUe1NqHGFGZ1gTAJVTWNTocFulW1503_hKdVbr2cPVX-2g5nSzGs2T-8vA4Hs2TIuVZllCeVSCGBQgty5xmHFaUMqYpE3mmOXCdCc0zzoervCQsPlySVFQilXKVC6FZH90cc7fOvu3AB7WxOxeP8CrNGZN8SCSP1O2RKpz13kGlts402nWKEnVQq6JadVAb0eSIvpsaun859fw0-eV_AHsJfOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733954095</pqid></control><display><type>article</type><title>Extension of the unsymmetric 8‐node hexahedral solid element US‐ATFH8 to 3D hyper‐elastic finite deformation analysis</title><source>Access via Wiley Online Library</source><creator>Ma, Ru‐Xia ; Cen, Song ; Shang, Yan ; Li, Chen‐Feng</creator><creatorcontrib>Ma, Ru‐Xia ; Cen, Song ; Shang, Yan ; Li, Chen‐Feng</creatorcontrib><description>This work extends the recent US‐ATFH8 element to 3D hyper‐elastic finite deformation analysis. Using two sets of shape functions, the new 3D element comprises of 8 nodes and 24 DOFs. The first set of shape functions represent the test functions that come from the conventional isoparametric interpolation, and the second set, representing the trial functions, are constructed from the homogenous solutions for linear elasticity governing equations, termed analytical trial functions (ATFs). This study considers finite deformation for hyper‐elastic materials, but it is assumed that the analytical solutions associated with hyper‐elastic materials can be updated to hold approximately in each incremental step. Moreover, the deformation information required for stress computation is updated by using the incremental deformation gradient, which is constructed from the updated ATFs. Numerical examples show that without additional pressure DOF, the element US‐ATFH8 still behaves well in nearly incompressible hyper‐elastic 3D problems with finite deformation, even when the meshes are extremely distorted.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.7086</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>3D hyper‐elastic analysis ; analytical trial functions ; Deformation analysis ; Elastic analysis ; Elastic deformation ; Exact solutions ; finite deformation ; hexahedral element ; Interpolation ; Shape functions ; unsymmetric finite element</subject><ispartof>International journal for numerical methods in engineering, 2022-12, Vol.123 (23), p.5749-5778</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2566-156fe84ce8a9d7165eb1133a13876a5e5a68a56554b7d03020d028f8299b788a3</citedby><cites>FETCH-LOGICAL-c2566-156fe84ce8a9d7165eb1133a13876a5e5a68a56554b7d03020d028f8299b788a3</cites><orcidid>0000-0001-9869-5039 ; 0000-0002-8674-4005 ; 0000-0001-9452-5390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.7086$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.7086$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ma, Ru‐Xia</creatorcontrib><creatorcontrib>Cen, Song</creatorcontrib><creatorcontrib>Shang, Yan</creatorcontrib><creatorcontrib>Li, Chen‐Feng</creatorcontrib><title>Extension of the unsymmetric 8‐node hexahedral solid element US‐ATFH8 to 3D hyper‐elastic finite deformation analysis</title><title>International journal for numerical methods in engineering</title><description>This work extends the recent US‐ATFH8 element to 3D hyper‐elastic finite deformation analysis. Using two sets of shape functions, the new 3D element comprises of 8 nodes and 24 DOFs. The first set of shape functions represent the test functions that come from the conventional isoparametric interpolation, and the second set, representing the trial functions, are constructed from the homogenous solutions for linear elasticity governing equations, termed analytical trial functions (ATFs). This study considers finite deformation for hyper‐elastic materials, but it is assumed that the analytical solutions associated with hyper‐elastic materials can be updated to hold approximately in each incremental step. Moreover, the deformation information required for stress computation is updated by using the incremental deformation gradient, which is constructed from the updated ATFs. Numerical examples show that without additional pressure DOF, the element US‐ATFH8 still behaves well in nearly incompressible hyper‐elastic 3D problems with finite deformation, even when the meshes are extremely distorted.</description><subject>3D hyper‐elastic analysis</subject><subject>analytical trial functions</subject><subject>Deformation analysis</subject><subject>Elastic analysis</subject><subject>Elastic deformation</subject><subject>Exact solutions</subject><subject>finite deformation</subject><subject>hexahedral element</subject><subject>Interpolation</subject><subject>Shape functions</subject><subject>unsymmetric finite element</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOAjEQhhujiYgmPkITL14W2y3dbY8EQUxQD8K5KbuzoWR3i22JbLz4CD6jT2IRr54mmfnyz8yH0DUlA0pIetc2MMiJyE5QjxKZJyQl-SnqxZFMuBT0HF14vyGEUk5YD31M9gFab2yLbYXDGvCu9V3TQHCmwOL786u1JeA17PUaSqdr7G1tSgw1NNAGvHyNyGgxnQkcLGb3eN1twcUe1NqHGFGZ1gTAJVTWNTocFulW1503_hKdVbr2cPVX-2g5nSzGs2T-8vA4Hs2TIuVZllCeVSCGBQgty5xmHFaUMqYpE3mmOXCdCc0zzoervCQsPlySVFQilXKVC6FZH90cc7fOvu3AB7WxOxeP8CrNGZN8SCSP1O2RKpz13kGlts402nWKEnVQq6JadVAb0eSIvpsaun859fw0-eV_AHsJfOQ</recordid><startdate>20221215</startdate><enddate>20221215</enddate><creator>Ma, Ru‐Xia</creator><creator>Cen, Song</creator><creator>Shang, Yan</creator><creator>Li, Chen‐Feng</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9869-5039</orcidid><orcidid>https://orcid.org/0000-0002-8674-4005</orcidid><orcidid>https://orcid.org/0000-0001-9452-5390</orcidid></search><sort><creationdate>20221215</creationdate><title>Extension of the unsymmetric 8‐node hexahedral solid element US‐ATFH8 to 3D hyper‐elastic finite deformation analysis</title><author>Ma, Ru‐Xia ; Cen, Song ; Shang, Yan ; Li, Chen‐Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2566-156fe84ce8a9d7165eb1133a13876a5e5a68a56554b7d03020d028f8299b788a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3D hyper‐elastic analysis</topic><topic>analytical trial functions</topic><topic>Deformation analysis</topic><topic>Elastic analysis</topic><topic>Elastic deformation</topic><topic>Exact solutions</topic><topic>finite deformation</topic><topic>hexahedral element</topic><topic>Interpolation</topic><topic>Shape functions</topic><topic>unsymmetric finite element</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Ru‐Xia</creatorcontrib><creatorcontrib>Cen, Song</creatorcontrib><creatorcontrib>Shang, Yan</creatorcontrib><creatorcontrib>Li, Chen‐Feng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Ru‐Xia</au><au>Cen, Song</au><au>Shang, Yan</au><au>Li, Chen‐Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extension of the unsymmetric 8‐node hexahedral solid element US‐ATFH8 to 3D hyper‐elastic finite deformation analysis</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2022-12-15</date><risdate>2022</risdate><volume>123</volume><issue>23</issue><spage>5749</spage><epage>5778</epage><pages>5749-5778</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>This work extends the recent US‐ATFH8 element to 3D hyper‐elastic finite deformation analysis. Using two sets of shape functions, the new 3D element comprises of 8 nodes and 24 DOFs. The first set of shape functions represent the test functions that come from the conventional isoparametric interpolation, and the second set, representing the trial functions, are constructed from the homogenous solutions for linear elasticity governing equations, termed analytical trial functions (ATFs). This study considers finite deformation for hyper‐elastic materials, but it is assumed that the analytical solutions associated with hyper‐elastic materials can be updated to hold approximately in each incremental step. Moreover, the deformation information required for stress computation is updated by using the incremental deformation gradient, which is constructed from the updated ATFs. Numerical examples show that without additional pressure DOF, the element US‐ATFH8 still behaves well in nearly incompressible hyper‐elastic 3D problems with finite deformation, even when the meshes are extremely distorted.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.7086</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0001-9869-5039</orcidid><orcidid>https://orcid.org/0000-0002-8674-4005</orcidid><orcidid>https://orcid.org/0000-0001-9452-5390</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2022-12, Vol.123 (23), p.5749-5778
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2733954095
source Access via Wiley Online Library
subjects 3D hyper‐elastic analysis
analytical trial functions
Deformation analysis
Elastic analysis
Elastic deformation
Exact solutions
finite deformation
hexahedral element
Interpolation
Shape functions
unsymmetric finite element
title Extension of the unsymmetric 8‐node hexahedral solid element US‐ATFH8 to 3D hyper‐elastic finite deformation analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A26%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extension%20of%20the%20unsymmetric%208%E2%80%90node%20hexahedral%20solid%20element%20US%E2%80%90ATFH8%20to%203D%20hyper%E2%80%90elastic%20finite%20deformation%20analysis&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Ma,%20Ru%E2%80%90Xia&rft.date=2022-12-15&rft.volume=123&rft.issue=23&rft.spage=5749&rft.epage=5778&rft.pages=5749-5778&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.7086&rft_dat=%3Cproquest_cross%3E2733954095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733954095&rft_id=info:pmid/&rfr_iscdi=true