Overcoming metal-rich surface chemistry limitations of ScAlN for high electrical performance heterostructures
While metal-rich ScAlN epitaxy has traditionally led to mixed phase films by controlling the surface chemistry with transient metal doses utilizing a pulsed method of molecular beam epitaxy, phase-pure, metal-rich epitaxy of ScAlN was demonstrated, showing improved structural and electrical characte...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2022-11, Vol.132 (18) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 132 |
creator | Engel, Zachary Motoki, Keisuke Matthews, Christopher M. Doolittle, W. Alan |
description | While metal-rich ScAlN epitaxy has traditionally led to mixed phase films by controlling the surface chemistry with transient metal doses utilizing a pulsed method of molecular beam epitaxy, phase-pure, metal-rich epitaxy of ScAlN was demonstrated, showing improved structural and electrical characteristics. The effects of substrate temperature and III/V ratio were studied, and an x-ray diffraction figure of merit and surface roughness as low as 225 arcsec and 0.68 nm, respectively, were demonstrated. A significant catalytic effect is observed with the use of Sc in metal-rich conditions, resulting in varied growth rates with substrate temperature and Sc surface coverage. This catalytic effect results in complications when selecting synthesis conditions and for in situ monitoring and can be accounted for improved phase purity. The variation of growth rates with Sc surface coverage introduces non-linearities to the transient initiation stage of growth but also introduces a feedback stabilization of the surface chemistry. Accounting for these complexities, a Sc0.2Al0.8N high electron mobility transistor (HEMT) heterostructure is demonstrated with a sheet resistance of 152 Ω/□, a mobility of 700 cm2/Vs, and a sheet charge of 5.9 × 1013 cm−2. |
doi_str_mv | 10.1063/5.0121621 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2733669732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2733669732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-9868ca9add4c655fc47e3b8c656da40cf918970875425029e370f8fe45d2813f3</originalsourceid><addsrcrecordid>eNqdkEtLAzEUhYMoWKsL_0HAlcJoHpNMsizFFxS7UNchZpJOyrxMMoX-eyMtuHd1L5fv3HvuAeAao3uMOH1g9wgTzAk-ATOMhCwqxtApmCFEcCFkJc_BRYxbhDAWVM5At97ZYIbO9xvY2aTbInjTwDgFp42FprGdjynsYes7n3TyQx_h4OC7WbRv0A0BNn7TQNtak7JSt3C0IY873Wd5Y5MNQ9ZPJk3Bxktw5nQb7dWxzsHn0-PH8qVYrZ9fl4tVYSgnqZCCC6OlruvScMacKStLv0Tuea1LZJzE-RUkKlYShoi0tEJOOFuymghMHZ2Dm8PeMQzfk41JbYcp9PmkIhWlnMuKkkzdHiiTPcZgnRqD73TYK4zUb5qKqWOamb07sNEcY_gfvBvCH6jG2tEfPWuEVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733669732</pqid></control><display><type>article</type><title>Overcoming metal-rich surface chemistry limitations of ScAlN for high electrical performance heterostructures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Engel, Zachary ; Motoki, Keisuke ; Matthews, Christopher M. ; Doolittle, W. Alan</creator><creatorcontrib>Engel, Zachary ; Motoki, Keisuke ; Matthews, Christopher M. ; Doolittle, W. Alan</creatorcontrib><description>While metal-rich ScAlN epitaxy has traditionally led to mixed phase films by controlling the surface chemistry with transient metal doses utilizing a pulsed method of molecular beam epitaxy, phase-pure, metal-rich epitaxy of ScAlN was demonstrated, showing improved structural and electrical characteristics. The effects of substrate temperature and III/V ratio were studied, and an x-ray diffraction figure of merit and surface roughness as low as 225 arcsec and 0.68 nm, respectively, were demonstrated. A significant catalytic effect is observed with the use of Sc in metal-rich conditions, resulting in varied growth rates with substrate temperature and Sc surface coverage. This catalytic effect results in complications when selecting synthesis conditions and for in situ monitoring and can be accounted for improved phase purity. The variation of growth rates with Sc surface coverage introduces non-linearities to the transient initiation stage of growth but also introduces a feedback stabilization of the surface chemistry. Accounting for these complexities, a Sc0.2Al0.8N high electron mobility transistor (HEMT) heterostructure is demonstrated with a sheet resistance of 152 Ω/□, a mobility of 700 cm2/Vs, and a sheet charge of 5.9 × 1013 cm−2.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0121621</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Figure of merit ; Heterostructures ; High electron mobility transistors ; Molecular beam epitaxy ; Semiconductor devices ; Substrates ; Surface chemistry ; Surface roughness</subject><ispartof>Journal of applied physics, 2022-11, Vol.132 (18)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-9868ca9add4c655fc47e3b8c656da40cf918970875425029e370f8fe45d2813f3</citedby><cites>FETCH-LOGICAL-c362t-9868ca9add4c655fc47e3b8c656da40cf918970875425029e370f8fe45d2813f3</cites><orcidid>0000-0002-0502-1981 ; 0000-0001-9833-4006 ; 0000-0001-6427-5327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0121621$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Engel, Zachary</creatorcontrib><creatorcontrib>Motoki, Keisuke</creatorcontrib><creatorcontrib>Matthews, Christopher M.</creatorcontrib><creatorcontrib>Doolittle, W. Alan</creatorcontrib><title>Overcoming metal-rich surface chemistry limitations of ScAlN for high electrical performance heterostructures</title><title>Journal of applied physics</title><description>While metal-rich ScAlN epitaxy has traditionally led to mixed phase films by controlling the surface chemistry with transient metal doses utilizing a pulsed method of molecular beam epitaxy, phase-pure, metal-rich epitaxy of ScAlN was demonstrated, showing improved structural and electrical characteristics. The effects of substrate temperature and III/V ratio were studied, and an x-ray diffraction figure of merit and surface roughness as low as 225 arcsec and 0.68 nm, respectively, were demonstrated. A significant catalytic effect is observed with the use of Sc in metal-rich conditions, resulting in varied growth rates with substrate temperature and Sc surface coverage. This catalytic effect results in complications when selecting synthesis conditions and for in situ monitoring and can be accounted for improved phase purity. The variation of growth rates with Sc surface coverage introduces non-linearities to the transient initiation stage of growth but also introduces a feedback stabilization of the surface chemistry. Accounting for these complexities, a Sc0.2Al0.8N high electron mobility transistor (HEMT) heterostructure is demonstrated with a sheet resistance of 152 Ω/□, a mobility of 700 cm2/Vs, and a sheet charge of 5.9 × 1013 cm−2.</description><subject>Applied physics</subject><subject>Figure of merit</subject><subject>Heterostructures</subject><subject>High electron mobility transistors</subject><subject>Molecular beam epitaxy</subject><subject>Semiconductor devices</subject><subject>Substrates</subject><subject>Surface chemistry</subject><subject>Surface roughness</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkEtLAzEUhYMoWKsL_0HAlcJoHpNMsizFFxS7UNchZpJOyrxMMoX-eyMtuHd1L5fv3HvuAeAao3uMOH1g9wgTzAk-ATOMhCwqxtApmCFEcCFkJc_BRYxbhDAWVM5At97ZYIbO9xvY2aTbInjTwDgFp42FprGdjynsYes7n3TyQx_h4OC7WbRv0A0BNn7TQNtak7JSt3C0IY873Wd5Y5MNQ9ZPJk3Bxktw5nQb7dWxzsHn0-PH8qVYrZ9fl4tVYSgnqZCCC6OlruvScMacKStLv0Tuea1LZJzE-RUkKlYShoi0tEJOOFuymghMHZ2Dm8PeMQzfk41JbYcp9PmkIhWlnMuKkkzdHiiTPcZgnRqD73TYK4zUb5qKqWOamb07sNEcY_gfvBvCH6jG2tEfPWuEVw</recordid><startdate>20221114</startdate><enddate>20221114</enddate><creator>Engel, Zachary</creator><creator>Motoki, Keisuke</creator><creator>Matthews, Christopher M.</creator><creator>Doolittle, W. Alan</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0502-1981</orcidid><orcidid>https://orcid.org/0000-0001-9833-4006</orcidid><orcidid>https://orcid.org/0000-0001-6427-5327</orcidid></search><sort><creationdate>20221114</creationdate><title>Overcoming metal-rich surface chemistry limitations of ScAlN for high electrical performance heterostructures</title><author>Engel, Zachary ; Motoki, Keisuke ; Matthews, Christopher M. ; Doolittle, W. Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-9868ca9add4c655fc47e3b8c656da40cf918970875425029e370f8fe45d2813f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Figure of merit</topic><topic>Heterostructures</topic><topic>High electron mobility transistors</topic><topic>Molecular beam epitaxy</topic><topic>Semiconductor devices</topic><topic>Substrates</topic><topic>Surface chemistry</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Engel, Zachary</creatorcontrib><creatorcontrib>Motoki, Keisuke</creatorcontrib><creatorcontrib>Matthews, Christopher M.</creatorcontrib><creatorcontrib>Doolittle, W. Alan</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Engel, Zachary</au><au>Motoki, Keisuke</au><au>Matthews, Christopher M.</au><au>Doolittle, W. Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overcoming metal-rich surface chemistry limitations of ScAlN for high electrical performance heterostructures</atitle><jtitle>Journal of applied physics</jtitle><date>2022-11-14</date><risdate>2022</risdate><volume>132</volume><issue>18</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>While metal-rich ScAlN epitaxy has traditionally led to mixed phase films by controlling the surface chemistry with transient metal doses utilizing a pulsed method of molecular beam epitaxy, phase-pure, metal-rich epitaxy of ScAlN was demonstrated, showing improved structural and electrical characteristics. The effects of substrate temperature and III/V ratio were studied, and an x-ray diffraction figure of merit and surface roughness as low as 225 arcsec and 0.68 nm, respectively, were demonstrated. A significant catalytic effect is observed with the use of Sc in metal-rich conditions, resulting in varied growth rates with substrate temperature and Sc surface coverage. This catalytic effect results in complications when selecting synthesis conditions and for in situ monitoring and can be accounted for improved phase purity. The variation of growth rates with Sc surface coverage introduces non-linearities to the transient initiation stage of growth but also introduces a feedback stabilization of the surface chemistry. Accounting for these complexities, a Sc0.2Al0.8N high electron mobility transistor (HEMT) heterostructure is demonstrated with a sheet resistance of 152 Ω/□, a mobility of 700 cm2/Vs, and a sheet charge of 5.9 × 1013 cm−2.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0121621</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0502-1981</orcidid><orcidid>https://orcid.org/0000-0001-9833-4006</orcidid><orcidid>https://orcid.org/0000-0001-6427-5327</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2022-11, Vol.132 (18) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2733669732 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Figure of merit Heterostructures High electron mobility transistors Molecular beam epitaxy Semiconductor devices Substrates Surface chemistry Surface roughness |
title | Overcoming metal-rich surface chemistry limitations of ScAlN for high electrical performance heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overcoming%20metal-rich%20surface%20chemistry%20limitations%20of%20ScAlN%20for%20high%20electrical%20performance%20heterostructures&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Engel,%20Zachary&rft.date=2022-11-14&rft.volume=132&rft.issue=18&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0121621&rft_dat=%3Cproquest_scita%3E2733669732%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733669732&rft_id=info:pmid/&rfr_iscdi=true |